首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Sealing performance and fatigue life of the fracturing packer rubber of various materials
【24h】

Sealing performance and fatigue life of the fracturing packer rubber of various materials

机译:Sealing performance and fatigue life of the fracturing packer rubber of various materials

获取原文
获取原文并翻译 | 示例
       

摘要

The finite element model of four packer rubber materials was established by using ABAQUS and FE-SAFE software. The initial sealing load (the load is the pressure) was 11.85 MPa, and the working load was 58.15 MPa. The sealing evaluation coefficient, maximum contact stress, and fatigue life value of four material packer rubbers were considered when considering temperature changes and fatigue unit nodes. The results show that when the working load and the structural parameters of the rubber are the same, the sealing evaluation coefficient of the four material rubber increases with the increase of temperature. When the working temperature reaches 125 celcius, the value of the rubber seal evaluation coefficient of the HNBR material is the largest, and the value of the rubber seal evaluation coefficient of the EPDM material is the smallest. Similarly, the maximum contact stress of the four material rubbers increases with increasing temperature. When the temperature reaches 125 celcius, the maximum contact stress of the HNBR material is the largest, and the maximum contact stress of the EPDM material is the smallest. The rubber of the four materials increase the fatigue life value with the increase in the temperature within the operating temperature range studied. When the temperature is lower than 120 celcius, the fatigue life value of the HNBR material rubber is the largest. When the temperature is higher than 120 celcius, the fatigue life value of the CR material rubber is the largest. Regardless of the temperature change, the fatigue life value of the EPDM is the smallest. By comparing the results of field experiments with the results of finite element models, the two are found to have good consistency, which verifies the validity and feasibility of the model. The research results have important guiding significance for the fatigue life prediction of various material packer rubbers under different temperatures.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号