首页> 外文期刊>Quaternary international >Stress-strain-time numerical modelling of a deep-seated gravitational slope deformation: Preliminary results
【24h】

Stress-strain-time numerical modelling of a deep-seated gravitational slope deformation: Preliminary results

机译:Stress-strain-time numerical modelling of a deep-seated gravitational slope deformation: Preliminary results

获取原文
获取原文并翻译 | 示例
       

摘要

An analysis of the effects of creep on the development of a deep-seated gravitational slope deformation (DSGSD), carried out by numerical modelling, is described. The slope rock mass evolution has been simulated applying different creep rheological models. The studied DSGSD is located in the Central Italian Alps (Val S. Giacomo). It is characterised by three main scarps, different sets of tensile trenches, and counterscarps, mapped during a detailed geomorphological survey. The mechanical behaviour of the rock masses, in terms of elasto-plastic parameters, has been defined on the base of laboratory and in situ tests. In order to simulate this instability process, a stress-strain-time numerical modelling has been performed by a finite-difference numerical code (Fast Lagrangian Analysis of Continua-FLAC). The effects of different constitutive model laws have been considered: the visco-elastic Maxwell model; the visco-elastic Burger model and the elasto-visco-plastic Burger model. The modelling has been performed simulating the melting of the ancient glacier, starting from its maximum load. Because of the difficulty to determine rock mass creep parameters, for each of the rheological models, a sensitivity analysis has been performed, varying the physical-mechanical properties. The visco-elasto-plastic model allows to underline the formation of shear surface showing a depth and a shape in good agreement with the morphologic features of the slope. The only action of unloading due to glacier melting seems to be insufficient to generate deep critical surfaces which can be related with the formation of the DSGSD.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号