首页> 外文期刊>Breast cancer online >Review of: Metalloproteinase axes increase β-catenin signaling in primary mouse mammary epithelial cells lacking TIMP3
【24h】

Review of: Metalloproteinase axes increase β-catenin signaling in primary mouse mammary epithelial cells lacking TIMP3

机译:Review of: Metalloproteinase axes increase β-catenin signaling in primary mouse mammary epithelial cells lacking TIMP3

获取原文
           

摘要

Citation of original article:C. V. Hojilla, I. Kim, Z. Kassiri, J. E. Fat, H. Fang, R. Khokha. Journal of Cell Science 2007; 120(6): 1050–1060.Abstract of the original article:Multiple cancers exhibit mutations in β-catenin that lead to increased stability, altered localization or amplified activity. β-Catenin is situated at the junction between the cadherin-mediated cell adhesion and Wnt signaling pathways, and TIMP3 functions to alter β-catenin signaling. Here we demonstrate that primary mouse embryonic fibroblasts (MEFs) and mammary epithelial cells (MECs) deficient in Timp3 have increased β-catenin signaling. Functionally, the loss of TIMP3 exerted cell-type-specific effects, with Timp3−/− MEFs being more sensitive and Timp3−/− MECs more resistant to EGTA-induced cell detachment than the wild type. Timp3−/− MECs had higher dephosphorylated β-catenin levels and increased β-catenin transcriptional activity as measured by TCF/LEF-responsive reporter assays. Real-time PCR analysis of β-catenin target genes in MEFs and MECs showed no alteration in Myc, decreased Ccnd1 (cyclin D1) and increased Mmp7 mRNA levels upon loss of TIMP3, with the latter occurring only in epithelial cells. Recombinant TIMP3 and synthetic metalloproteinase inhibitors reverted the increase in dephosphorylated β-catenin, decrease in Ccnd1 gene expression and increase in Mmp7 gene expression. Physiologically, Timp3−/− mammary glands displayed accelerated mammary ductal elongation during pubertal morphogenesis. Gain-of-function studies using slow-release TIMP-containing pellets revealed distinct effects of individual TIMPs on ductal morphogenesis. Recombinant TIMP1, TIMP3 and TIMP4 inhibited ductal elongation whereas TIMP2 promoted this process.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号