...
【24h】

Cellular Oscillators in Animal Segmentation

机译:Cellular Oscillators in Animal Segmentation

获取原文
获取原文并翻译 | 示例

摘要

Kinetic modeling of developmental dynamics requires detailed knowledge about genetic and metabolic networks that underlie developmental processes. However, such knowledge is not available for a vast majority of developmental processes. Here, we present an coarse-grained, phenomenological model of periodic pattern formation in multicellular organisms based on cellular oscillators (CD) that can be applied to systems for which little or no molecular data is available. An oscillatory process within cells serves as a developmental clock whose period is tightly regulated by cell-autonomous and non-autonomous mechanisms. A spatial pattern is generated as a result of an initial temporal ordering of the cell oscillators freezing into spatial order as the clocks slow down and stop at different times or phases in their cycles. When applied to vertebrate somitogenesis, the CO model can reproduce the dynamics of periodic gene expression patterns observed in the presomitic mesoderm. Different somite lengths can be generated by altering the period of the oscillation. There is evidence that a CO-type mechanism might also under-lie segment formation in certain invertebrates, such as annelids and short germ insects. This suggests that the dynamical principles of sequential segmentation might be equivalent throughout the animal kingdom although most of the genes involved in segment determination differ between distant phyla.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号