首页> 外文期刊>Plant and cell physiology >Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture
【24h】

Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture

机译:Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture

获取原文
获取原文并翻译 | 示例
           

摘要

A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号