首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >D-Homo-steroids. Part 7. Further studies on the mechanism ofD-homoannulation of 17α-hydroxypregnan-20-ones with Lewis acids
【24h】

D-Homo-steroids. Part 7. Further studies on the mechanism ofD-homoannulation of 17α-hydroxypregnan-20-ones with Lewis acids

机译:D-同类固醇。第 7 部分。17α-羟基孕甾-20-酮与路易斯酸D-均环化机制的进一步研究

获取原文
获取外文期刊封面目录资料

摘要

1978 173 D-Homo-steroids. Part 7.l Further Studies on the Mechanism of D-Homoannulation of 17a-Hydroxypregnan-20-oneswith Lewis Acids By David N. Kirk and Conor R. McHugh, Medical Research Council Steroid Reference Collection, Chemistry Department, Westfield College, Hampstead, London NW3 7ST The role of boron trifluoride in the o-homoannuiation of a 17a-hydroxypregnan-20-one (1) is truly catalytic: kinetic and l@Fn.m.r. data for the rearrangements of suitable derivatives show that boron trifluoride is not consumed. Rates of reaction, however, approximate to a second-order dependence on the concentration of boron trifluoride. The thermal rearrangement of 38.1 7a-dihydroxy-5a-pregnan-20-one(9) leads initially to a preponderance of the same o-homo-ketol as that which results from the Lewis-acid-catalysed reaction, although prolonged thermal re- arrangement leads to an equilibrated mixture of isomeric ketols.Use of magnesium ethoxide as a catalyst with both Lewis-acidic and -basic characteristics, gives a mixture of D-honio-ketols even under conditions of kinetic control. A new structure (1 3) is proposed for the transition state in the Lewis-acid-catalysed rearrangement: the novel features are a proton as the species responsible for holding the two oxygen atoms of the ketol in a syn-orientation, and catalysis by co-ordination of each oxygen atom with a molecule of Lewis acid. Selection of C-16 as the migrating centre is attributed to steric effects associated with the conformational rigidity of the hydrogen- bridged transition state (13).WE have already reported 1-3 a series of investigations numerous attempts to find a wholly satisfactory explan- into the mechanisms of D-homoannulation of 17~-ation, is the anomalous formation of the ketol (2) by 495hydroxypregnan-20-ones (1) under conditions of rearrangement of compounds (1) with Lewis-acid cata- either basic or Lewis-acidic catalysis, The one major 4 N. L. Wendlkr in ’Molecular Rearrangements,’ ed. P. deOutstanding feature Of these which has defied Mavo. Interscience, New Yo, 1964. vol. 2. DD. 1099-1101 and. A* 1 Part 0, D. N. Kirk and C. R. McHugh, J.C.S. Perkin I, llf4-1121, and references therein. . 1977, 893. ti D. N. Kirk and M. P. Hartshorn, ‘ Steroid Reaction Mechan- D.N. Kirk and A. Mudd, J. Chem. SOC.(C), 1970, 2045. isms,’ Elsevier, Amsterdam, 1908, pp. 294-301, and references 8 D. N. Kirk and A. Mudd, J.C.S. Perkin I, 1975, 1450. therein. lysts. Other related reactions 495 proceed through migration of the 13,17-bond to give isomeric ketols of types (3) and (4), but the conversion (1) +(2) involves an exceptional migration of the 16,17-b0nd.3-~ Our recent study1 of the behaviour of a monocyclic model compound, 1-acetyl-2,2-dimet h ylc yclopent an01 (5), supported the idea that the conformational re-striction imposed upon ring D in a 17a-hydroxypregnan-20-one is a major factor controlling the steroid rearrange- ment, for the flexible model compound differed from the steroid in rearranging mainly by migration of quaternary rather than secondary carbon even under catalysis by boron trifluoride, giving the ketols (6) and (7) in the BHjyOH Me +JOH ratio ca. 4: 1.The ketol (6) was the sole product of alkaline rearrangement. The occurrence of some ' ab-normal' migration of secondary carbon even in the model system, however, suggested that some factor other than the purely conformational one must be involved in the Lewis-acid-catalysed process. The present paper describes further investigations aimed at understanding the special features of boron trifluoride catalysis. We report studies on: (i) the role of boron trifluoride in the reaction; (ii) the relevance of COMe intramolecular hydrogen bonding in a-ketols ; (iii) the thermal (uncatalysed) rearrangement of 3p,l7a-di-hydroxy-5a-pregnan-2O-one (9); and (iv) the effects of other catalysts, of character intermediate between the J.C.S.Perkin I Lewis acids normally employed (boron trifluoride or aluminium alkoxides) and such strongly basic catalysts as potassium alkoxides. The results of these studies lead us to propose a new structure (13)for the transition st ate in the Lewis-acid-cat alysed reaction. (i) The role of boron trifluoyide. Turner suggested that boron trifluoride reacts with the ketol (1)to give a cyclic complex (transition state) of type (8). The structure (8) implies at least a temporary loss of fluoride ion from the boron trifluoride in order that the boron atom may co-ordinate simultaneously with two oxygen atoms. It is not clear from previous work, however, whether boron trifluoride is consumed in the reaction, or whether its role is truly catalytic.Furthermore, no attempt seems to have been made, prior to our own work, to determine the dependence of the rate of reaction on the concentration of boron trifluoride. We have recently reported measurements of the kinetics of rearrangement of the model ketol (5), which showed the reaction to be of the first order with respect to ketol concentration, and of apparent zero order with respect to boron trifluoride when the latter was used at a single concentration. A kinetic study of the rearrangement of 3p,17a-dihydroxy-5a-pregnan-2O-one(9) with boron tri- fluoride, in the molar ratio 3 : 4, respectively (see Experimental section), has now produced similar con- clusions.The implication is either that boron tri-fluoride does not contribute to the rate-determining step, which would be nonsensical, or that the concen- tration of boron trifluoride remains effectively constant throughout the reaction. To elucidate further the order of reaction with respect to boron trifluoride, the steroid ketol (9) was rearranged with three different concentrations of boron trifluoride, in the ratio 1 : 42 :2. The respective measured first- order rate constants for the disappearance of the ketol (9) were in the ratios ca. 1:2.4 : 3.3. Although these limited data do not permit a precise analysis, they show clearly that the rate of reaction is not: proportional simply to BF,, but approximates more nearly to being proportional to BF3I2, We therefore considered possible transition states involving two molecules of boron tri-fluoride (below).The implication from reaction kinetics that boron trifluoride is not consumed has been confirmed by a 1QFn.m.r. study. To avoid any complicating inter- action between boron trifluoride and the 3P-hydroxy- group, and to provide an internal reference signal, the steroid (9) was converted into its 3-trifluoroacetate (10). Separate solutions of the derivative (10) and of boron trifluoride-ether coniplex, each at 0.16~concentration in 1,2-dimethoxyethane (DME),gave signals 76.6 (sharp; OCOCF,) and 155.8 p.p.m. (broad; BF,) upfield from that of fluorotrichloromethane (see Experimental section).A single solution containing both solutes in the same concentrations showed only the same two signals. Heating this solution in a sealed tube for 20 min at 50 "C was sufficient to cause complete rearrangement of the R. B. Turner, J. Amer. Chem. Soc., 1963, 78, 3484. steroid (10) into the D-homo-ketol of type (2), but neither the area nor the chemical shift of either 19F signal was affected by this change, and no new signal appeared. These observations indicate not only that boron trifluoride is not consumed, but also that the amount of any steroid-BF, complex present in solution in DME either before or after the rearrangement is very small. The expected sensitivity of the boron trifluoride signal to changes in its environment was established by successive dilution of boron trifluoride-diethyl ether complex with DME : the 19Fsignal moved progressively upfield by a total of ca.2.8 p.p.m. as the proportion of boron trifluoride-ether was reduced from 100 to 2,. (ii) Hydrogen bonding in a-ketols. The i.r. spectra of 17-hydroxypregnan-20-ones in non-polar solvents7 show O-H stretching bands at 3 620 and ca. 3 500 cm-l which are essentially invariant with the concentration of the solution, indicating an equilibrium between the non- associated and intramolecularly hydrogen-bonded forms, respectively. D-Homo-ketols of type (4)give evidence of strong intramolecular hydrogen bonding between the 17ap-hydroxy- (equatorial) and 17-oxo-groups, exhibit- ing a broad band at ca.3 485 cm-l, but the 17aa-hydroxy- (axial) isomer (3) is only able to hydrogen bond intra- molecularly in its unstable twist-boat conformation ; the band at 3 620 cm-l is therefore much more pronounced than that at ca. 3 500 cm-l for this i~omer.~~~ We have now examined the i.r. spectra of the ketol (10) and of the derived D-homo-ketols of types (2) and (3), each as its 3-trifluoroacetate to avoid complicating the O-H region. The important data are listed in Table 1 (an additional small sharp peak near 3 700 cm-I TABLE1 1.r.data for ketols (0.005~in CCI,) Unassociated Associated O-H stretch O-H stretch A“ associated Ketol (cm-l) (cm-l) A uriassociated (10)(2)(3) 3 620 3 600 3 610 3 508 3 490 3 520 0.65 2.0 0.06 Maximum absorbance of ‘ associated O-H ’ divided bythat for ‘ unassociated O-H ’ ; this ratio exaggerates the im- portance of the sharp peak at 3 600-3 620 cm-1, hut is used for comparison with data given in ref.10; D-Homo-ketols as 3P-trifluoroacetoxy-derivatives of 5a-series. was ascribed to an overtone of the carbonyl stretching frequency). The shifts in O-H stretching frequencies due to H-bonding are in the range 90-112 cn-l, indicative of the strong association normally found for the 0-H -* -O=C bonding in a-ketols.1° The relative intensities of the two bands, for ketol (10) and its re- arrangement product (3), accord with the expectation that conformational equilibria are important in deciding the extent of hydrogen bonding in each compound, for R.N. Jones, P. Humphries, F. Herling, and K. Dobriner, J. Amer. Chem. Soc., 1952, 74, 2820. D. K. Fukushima, S. Dobriner, M. $3. Heffler, T. H. Kritchev- sky, F. Herling, and G. Roberts, J. Avner. Chem. Soc., 1955, 77, 6585.* C. W. Shoppee, N. W. Hughes, and B. C. Newman, J. Chem. SOC.(C),1970, 558. 175 intramolecular hydrogen bonding- is only possible in each case for a conformation of relatively high energy. The D-homo-ketol of type (2) appears to exist in solution substantially with the chair conformation of ring D, which permits hydrogen bonding, rather than in the twist-boat form which would relieve the strong 17p-RiIe, 13p-Me interaction.ll The strength of hydrogen bonding in both the ketol (10) and the product (2) of its kinetically favoured thermal rearrangement (see below) is compatible with our proposed transition state (13)for MP 8-.-BF3 (13) the Lewis-acid-catalysed rearrangement.We consider that the latter, like the thermal reaction (below), is conformationally constrained by the presence of a proton ‘bridge’ between the two oxygen atoms in the tran- sition state (see Discussion section). (iii) Thermal rearrangement of the ketol (9). 3(3-Acetoxy-17a-hydroxy-5a-pregnan-2O-one(1 1) has been reported8 to rearrange on heating at 240 “C, to give a mixture containing unchanged ketol (11) (50) and D-homo-ketols of types (2) and (3),each in 15 yield.The suggestion that the stereospecificity of these rearrangements is a result of intramolecular hydrogen bonding, of the type discussed above, prompted us to investigate the thermal reaction in more detail. Table 2 records our results on heating the ketol (9) and the TABLE2 Thermal rearrangement of ketols Product ketols ()Reactant Duration of r-----h-ketol l/”C heating (h) (10) (2)h (3? 244 1 50 35 15 (lo) 244 3 0 0 100 (2)(l0k 254 1 0 84 16 a By ‘H n.m.r.: see ref. 2 and Experimental section, b 3p-OH,5cr-series. derived D-homo-ketol of type (2) in evacuated sealed Pyrex thbes. Evidently the kinetically controlled D-homoannulation involves selective or specific migration of the 16,17-bond to give the ketol (2), which is con-verted more slowly into the stable isomer (3).The latter change may possibly occzlr by methyl migration (17p --+17ap), or more probably by reversion to the original ketol (9), the pathway already established l2 lo L. Joris and P. von R. Schleyer, J. Amer. Chem. Soc., 1968, 90, 4599. l1 R. S. Rosenfeld, J. Amer. Chem. SOC.,1957, 79, 5540; D. Taub, R. D. Hoffsommer, H. L. Slates, C. H. Kuo, and N. L, Wendler, ibid., 1960, 82, 4012; N. L. Wendler, Chem. and Ind., 1958, 1662; Tetrahedron, 1960, 11,213. l2R. B. Turner, M. Perelman, and K. T. Park, jun., J. Amer. Chem. SOC.,1957, 79, 1108. for the Lewis-acid-catalysed equilibration of D-honio-ketols. The initial stereospecific formation of the ketol (2) must occur through a cyclic hydrogen-bridged tran- sition state (12),8 which has a formal resemblance to that (8) postulated by Turner for the boron-trifluoride-catalysed reaction.(iv) Rearrangements using magnesium or lithium alkoxides as catalysts. Since the D-homoannulation path is critically dependent upon the nature of the catalyst (acidic 3-5 or basic 25495), it seemed possible that the electronic charge density and distribution in the organic part of the activated complex might be a factor contri- buting to the selection of either 13,17- or 16,17-bond migration. An anionic transition state, even if closely associated with a metal cation (K+)in a cyclic complex, favours 13,17-bond migration,2 whereas the thermal reaction (associated H+) and the supposedly electron- deficient complex with a Lewis acid BF, or Al(OR), favour niigration of the 16,17-bond.On the basis of different electronegativity values (K, 0.8; Li, 1.0; Mg, 1.2; Al, 1.5; B, 2.0) l3 we therefore examined lithium t-butoxide and magnesium ethoxide as alternative catalysts. Our expectation that one of these ‘inter-mediate ’ catalysts would afford a kinetically controlled mixture of rearranged ketols of types (2) and (3) was fulfilled by magnesium ethoxide. The more basic lithium reagent gave only the normal product (3) of a base-catalysed reaction with a syn orientation of ketol oxygen atoms.2 Magnesium ethoxide in xylene-ethanol, in contrast, caused complete rearrangement of the ketol (11) to give the D-homo-ketols (2) and (3) in the ratio 30 :70.most of the ethanol being removed by distillation during the reaction. A slower reaction in refluxing ethanol alone was sampled at intervals for analysis, giving the D-homo-ketols in the proportions indicated in Table 3. Although the rearrangement is predominantly TABLE3 Rearrangement of ketol (1) by magnesium ethoxide in refluxing ethanol Ketols (yo)a Time (min) “(1) (3) * (2) (4; 0 100 16 36 50 14 50 24 56 11 9 110 21 50 14 14 ‘‘ Ketols of 3p-OH,5a-series; analysis of mixtures by g.1.c. (see Experiniental section). of ‘base-catalysed ’ type, the simultaneous appearance of the ‘acid-catalysed ’ product (2) indicates that magnesium ethoxide is also able to function as a weak Lewis acid under the reaction conditions, although it is less effective in this respect than are aluminium alkoxides.Discussion.-On the basis of the foregoing results we propose the ‘hydrogen-bridged ’ structure (13) for the l3 See, for example, R. T. Sanderson, Chemical Periodicity,’ Reinhold, New York, 1960, p. 34. l4 P. Diehl, Helv. Phys. Acta, 1958, 31, 685; see also N. N. Greenwood and R. L. Martin, Quart. Rev., 1954, 8, 1. l5 A. Fratiello and C. S. Stover, J. Org. Chern., 1975, 40, 1244. J.C.S. Perkin I transition state in the Lewis-acid-catalysed reaction. The concept of a bridging hydrogen atom (or proton) rather than a -BF2-group is compatible with the need for two molecules of boron trifluoride (or presumably of any other Lewis acid), one being co-ordinated at each of the oxygen atoms.The boron-trifluoride-catalysed re-arrangement is therefore visualized as being mechanistic- ally similar to the thermal process, in which only hydrogen can be the bridging species. A Lewis acid, b37 co-ordination with oxygen of the 17a-hydroxy-group, would increase the lability of the hydroxylic hydrogen atom. Boron trifluoride added to methanol is known14 to promote hydrogen bonding between methanol molecules, forming complexes of the + type (14) which can ionise to species such as MeOH,- MeOBF,, so that the solution is a moderately strong acid. MeS* /Me.0 s-/O----H----‘HF3 (14) In an a-ketol (l),the Lewis acid presumably interacts initially with the more basic 17a-hydroxy-group rather than with the ketone,15 thereby weakening the O-H bond, but hydrogen transfer between oxygen atoms during rearrangement of the ketol appears to be favoured FIGURE rc Orbitals of semidione radical anion 1 by simultaneous association of both oxygen atoms with molecules of the Lewis acid.This is compatible with a substantial degree of ionisation of the O-H bond as the hydrogen atom (or proton) is transferred from one oxygen atom to the other. A ‘frontier molecular orbital ’l6 analysis of the D-homoannulation sheds further light on its mechanism. Base-promoted a-ketol rearrangements are ‘allowed ’ in terms of orbital symmetry considerations, and have been described l7 in terms of a semidione radical anion interacting with the migrating group, which is looked l6 I.Fleming, ‘ Frontier Orbitals and Organic Chemical Reactions,’ Wiley-Interscience, London, 1976; G. B. Gill and M. R. Willis, ‘ Pericyclic Reactions,’ Chapman and Hall, London, 1974. R. W. Alder, Tetrahedron Letters, 1971, 193. 1978 on as an alkyl radical. The semidione radical anion (Figure 1) is considered to have five electrons in de- localised x-orbitals. The sixth electron is formally allotted to an orbital associated with the migrating group. The symmetry of the highest occupied mole- cular orbital (HOMO; #3) of the notional semidione radical anion allows a concerted 1,2 sigmatropic migration of the alkyl radical (Figure 2), with retention of configuration in the migrating group.6-6-FIGURE Symmetry-allowed 1,21sigmatropic migration in a-ketol anion This orbital model applies to the base-catalysed re-arrangement ; it is independent of the configuration (cis or trans) of the semidione component. A 1,2 sigmatropic shift of the type depicted in Figure 2 becomes ' forbidden,' however, if one of the five electrons is withdrawn from the semidione x-orbital system and allotted to the hydroxylic hydrogen atom, to permit it to retain covalent bonding to the n system in the thermaZ process. The HOMO of the semidione is then $2, which possesses the wrong symmetry for a concerted l,2 alkyl migration. A hydrogen transfer between termini of the x-system would, moreover, need to be of the improbable antarafacial 1,4 type.If, on the other 6 -. s-F3 BF3 Ring C FIGURE Symmetry-allowed a-ketol rearrangement involving 3 TC orbital (' vertical ' p lobes) and synchronous symmetry- allowed hydrogen migration between lone pairs (' horizontal ' p lobes), with BF, catalysis hand, the transition state for thermal rearrangement is visualised as comprising a six-electron combination of the x orbitals of a semidione with the migrating alkyl group, as in the base-catalysed process, while a hydrogen atom (proton) is transferred synchronously between ' lone pairs ' on the two oxygen atoms, in the plane of the G framework, orbital symmetries ' allow ' both parts of the process. Figure 3 depicts the x-orbital system as * For simplicity in drawing, Figure 3 depicts BF, as being attached to the ' back lobe ' of an 0----H bonding p orbital, assuming sp-hybridised oxygen ; an alternative but more crowded drawing, with sp hybridisation at oxygen, would allow 0---H and 0----BF, bonding via separate sp hybrid orbitals; this does not conflict with the orbital symmetry requirements of the rearrangement.177 orthogonal to the plane which contains both the o-bond framework O-C(ZO)-C(l7)-0 and a coplanar ' lone pair ' orbital of p-type symmetry on each oxygen atom, with a proton in process of transfer between these ' lone pair ' orbitals. (To preserve ovei all electrical neutrality, the migrating hydrogen is formally regarded as a proton to counter-balance the extra electron allotted to the x-orbital system.) Hoffmann and his co-workers have applied a qualitative perturbation treatment to the through- bond coupling of lone pairs on atoms which are separated by three D bonds, showing that the HOMO may be represented as a symmetric combination of atomic orbitals of the type illustrated in Figure 4.A ' proton ' can therefore retain partial bonding to both oxygen atoms while passing from one lone pair to the other. According to this model, the Lewis-acid-catalysed re-action is facilitated by the loosening of the proton --.-T HOMO(Sl FIGURE Through-bond interaction of lone-pairs : symmetry4 classification (S and A) with respect to the ' vertical ' plane which bisects the four-atom system (cf. ref. 18) (increased tendency to ionisation of the 0 * -* H bond), through association of the Lewis acid with oxygen." The orbital symmetry features of the reaction remain as in the thermal case.This description represents both the thermal and the Lewis-acid-catalysed transition states as having some dipolar character, corresponding to the simultaneous existence of a migrating proton and a notional radical anion. There is no qualitative difference, however, from the charge distribution formally associated with the framework of the molecule in describing the base-catalysed reaction. This conclusion is consistent with our earlier Hammett-type treatment of the effects of the electron-withdrawing s~bstituents,~ which showed an unexpectedly small influence of substituent charactei on rates of reactions. Base-catalysed rearrangements of ketols (1) in protic solvents proceed through a transition state in which the 17a- and 20-oxygen atoms are in an anti-conformation, from stereochemical evidence.6 The base-catalysed re-arrangement in a dipolar aprotic solvent (KOBut-Me2SO), however, like the thermal and Lewis-acid-catalysed processes, involves a syn-conformation in which a cation (K+) is assumed to be associated with both the oxygen atoms of the reacting ket01.~ In seeking to explain the differing selection of the migrating group under acidic and basic catalysis, we therefore considered the available information on the R.Hoffmann, Accounts Chem. Res., 1971, 4, 1; C. C. Levin, R. Hoffmann, W. J.Hehre, and J. Hudec, J. C. S. Perkin II, 1973, 210. interactions between various cations and a semidione radical anion. Simple semidione radical anions exist in interconvertible cis-and trans-configurations.19 A recent e.s.r. study has shown that lithium cations selectively stabilise the cis-isomer, presumably through simultaneous strong electrostatic interactions with both oxygen atoms. The larger cations Na+ and K+, however, associate less strongly with the oxygen atoms, and permit the anionic species to exist mainly in the trans-configuration under the experimental conditions. The ionic radius of Li+ is only half that of K+, whereas H+ is effectively a point charge, and should interact most strongly of all with the two oxygen atoms of a semidione radical anion (or of an enediol dianion) in its cis-con- figuration.We therefore propose that the effect of a ' bridging ' proton in the transition state for rearrange- ment of a ketol is to impose maximum conformational rigidity upon transition states of types (12) and (13). Association of the anion with K+, in contrast, would be relatively weak, and might therefore permit some flexibility of conformation in the transition state for rearrangement (cf. e.s.r. data for semidione radical anions,lV where variations in measured parameters are thought to indicate departure from strict planarity in some cases). Dreiding models of ' bridged ' transition states for 16,17-bond migration (12) and (13) and the alternative migration of C-13 (15) show that steric strains, notably the compression between C-18 and C-21 methyl groups, would be increased as the complex attained the transition state (15) required for C-13 6-V migration, Migration of C-16, in contrast avoids this increase in steric strain in the transition state; there may even be some relaxation of the compression between methyl groups as compared with that in the hydrogen- bonded ketol which precedes the transition state.Furthermore, as has been pointed out previously,2o the transition state (12) or (13) is of ' developing-chair' type, and is therefore conformationally favoured. The question of relative migrating aptitudes of alkyl groups has often been discussed. It is generally found for cationic rearrangements that quaternary carbon migrates in preference to tertiary or secondary groups.21 The ability of the migrating group to participate in delocalisation of the cationic charge is thought to be important.Reactions in anionic systems are less l9 G. A. Russell, D. F. Lawson, H. L. Malkus, R. D. Stephens,G. R. Underwood, T. Takano, and V. Malatesta, J. Amer. Chem. Soc., 1974, 98, 5830, and references therein. ** I. Elphimoff-Felkin and A. Skrobek, Bull. SOC. chim. France, 1959, 742; N. L. Wendler, D. Taub, and R. W. Walker, Tetrahedron, 1960, 11, 163. J.C.S. Perkin I common and are less well understood, but the evidence provided by our monocyclic model ketol (5) indicates that there is an electronic preference for migration of the quaternary carbon atom, even despite the necessary ' boat conformation of the transition state for the D-homoannulation of the steroid ketol.Although carb- anion stabilities in solution are generally considered to indicate that alkyl substituents have a destabilising effect, recent MO calculations and experiments in the gas phase suggest that negative charge can be stabilised by highly substituted alkyl groups,22 through polaris- ability effects. Whatever the explanation, our model experiments clearly demonstrate a general preference for the migration of quaternary rather than secondary carbon in an g-ketol which is free from strong conform- ational restraints. We therefore propose that the special feature which, in the thermal and acid-catalysed reactions, tends to oppose the normal preference for migration of a tertiary rather than a primary alkyl group, is the exceptional conformathnal rigidity, and the resultant maximising of steric compression, imposed by the need for a ' bridging proton in the transition state. A ' bridging ' potassium cation in the aprotic basic system,2 in contrast, exerts only weak control on the conformation of the syn-orientated ' semidione,' permitting relief of strains by conformational distortion away from strict coplanarity, The observed dual behaviour of magnesium ethoxide may well result from competition between two mechan- isms.As a base, the reagent may cause an anionic rearrangement, with Mg2+ as the species bridging the two oxygen atoms, while co-ordination of each oxygen atom with a molecule of magnesium ethoxide may permit a competing hydrogen-bridged reaction of Lewis acid type.EXPERIMENTAL For general notes on reagents, etc. see ref. 3. Boron-trijhoride-cutulysed Reurrungement of 3p, 17u-Di-hydroxy-5u-~regnun-2O-one(9).-(A) The ketol (9) (80 mg, 0.24 mmol) in 1,2-dimethoxyethane (40 ml) was treated with boron trifluoride-ether complex (40pl, 0.32 mmol). The mixture was immediately distributed among eight stoppered tubes, which were incubated at 49.5 "C. Sampling was carried out after a suitable time interval by adding saturated aqueous sodium hydrogen carbonate (25 ml) to a tube, followed by water (20 ml). The pre- cipitated organic material was collected and washed with water, then taken up in hot ethanol (4 ml).The solvent was removed under reduced pressure, and the residual dry solid was examined by lH n.m.r. in deuteriated dimethyl sulphoxide (see ref. 2). The estent of reaction was esti- mated by comparing the integral of the peak at z 9.60 (18-H, in reactant) with that of the unchanging peak at T 9.25 (19-H, in reactant and products). Samples taken at intervals of 3 min (from 3 min to 21 rnin) gave extents of reaction ranging from 20.5to 82.8, W. von E. Doering and L. Speers, J. Amer. Chem. Soc., 1950,72, 5515; M. Stiles and R. P. Mayer, ibid,1969, 81, 1497. 22 T. P. Lewis, Tetrahedron, 1969, 25, 4117; H. M. Niemeyer,ibid., 1977, 33, 775. respectively; a linear first-order plot with respect to steroid reactant gave k = 1.38 x lop3s-l (at 49.5 "C).(B) A similar reaction using ketol (9) (80 mg, 0.24 mmol) and boron trifluoride-ether (56.5p1, 0.45 mmol), sampled at 1.5 min intervals, gave a first-order plot with respect to steroid; K =I 3.27 x s-l (at 49.5 "C). (C) A reaction similar to (A)and (B) but with the boron trifluoride-etherate increased to 80 pl (0.64 mmol), and sampled at 1 niin intervals, gave a linear first-order plot with respect to steroid; k = 4.60 x lo-, s-l (at 49.5 "C). lSFN.m.r Investigation into Boron Trifluoride Consump- tion.-A Varian HA- 100 spectrometer was used, with lock trifluoroacetate group. The recovered steroid in deuteriated dimethyl sulphoxide exhibited an n.m.r.spectrum identical with that of pure 3P, 17a-dihydroxy- 17P-methyl-u-homo-5a- androstan- 17a-one (2 ; 3P-OH, 5a). Preparation of 3- Tri$uoroacetates.-3P, 17a-Dihydvoxy-5a-pregnan-20-one 3-tri,Ruoroacetate ( 10). 3/3,17cc-Dihydroxy-5cc-pregnan-20-one (9) (448 mg) was stirred with anhydrous benzene (200 ml) while trifluoroacetic anhydride (5 ml) was added. A clear solution was obtained after 3 min, and was set aside for a further 25 min. Solvent and excess of re- agent were then removed under reduced pressure and the residue was taken up in refluxing hexane (100 nil). Over-night, white crystals (218 mg) werefrequency 1 546 Hz. 1,1,2-Trichloro-3,3,3-trifluoropropene (TCFP) was used as external reference. The following systems were investigated at 30 "C.(A) Pure boron trijluoride-ether. This showed a single peak 91.46 p.p.m. upfield from TCFP. Given2, that the TCFP signal is 62 p.p.m. upfield from CFCI,, the boron trifluoride resonance is 153.5 p.p.m. upfield from CFCI,, identical with the value reported.24 (B) Boron trijluoride-ether in dimethoxyethane. Solutions were made up by adding boron trifluoride-ether to di-methoxyethme. The chemical shifts listed in Table 4 TABLE4 19Fi.rii.I-. spectra of BF,*Et20 solutions in DME Molar ratio of Shift of l9F signal (p.p.m. RF,.Et,O to DME upfield from CFC1,) 100 BF,.Et,O 153.5 1.65:1 154.5 0.825 : 1 155.1 0.413 : 1 155.6 0.165 : 1 156.1 0.041 : 1 156.2 (6) 0.017 : 1 156.2(8) 0.008: 1 156.3(3) relative to CFC1, are calculated from those measured relative to TCFP +62 p.p.m.(see above). Peaks became broad at low concentrations of BF,. (C) 3P,17a-IM~ydroxy-5a-pregnan-20-one3-triflz~ovoacetate (10) (for preparation see below). Compound (10) (34.3 mg) in dimethoxyethane (500 pl) showed a sharp singlet 14.6 p.p.m. upfield from TCFP (76.6 p.p.m. upfield from CFC1,). (D) 3p,17a-l~ihydroxy-5~-pregnan-2O-one3-tri$uoroacetate (10) and boron trzjluoride-ether (mixture before reaction). A cooled solution (0 "C) of the ketol 3-trifluoroacetate (10) (34.3 mg, 0.08 mmol) in dimethoxyethane (500 p1) in an n.m.r. sample tube was treated with boron trifluoride-ether (10 pl, 0.08 mmol). The tube was immediately sealed, and the contents were mixed and examined by n.m.r.(no re- arrangement occurs under these conditions). A sharp singlet was observed at 76.6 p.p.m. and a broad line, of equal area, at 155.8 p.p.m. (relative to CFC1,). (E) Mixture from. (D) after reaction. The sample tube from (D) was heated at 50 "C in a oil-bath for 20 min, and allowed to cool. N.m.r. examination again showed a sharp singlet at 76 6 p.p.ni. and a broad line of the same area at 155.8 p.p.m Immediately following n.m.r. examination the mixture was poured into saturated aqueous sodium hydrogen carbonate. The precipitated solid was collected, then taken up in methanol (20 m1) and stirred overnight with potassium carbonate (1 g) in water (2 ml) to remove the 23 J. Emsley, J. Feeney, and L. Sutcliffe, ' High Resolution Nuclear Magnetic Resonance Spectroscopy,' vol.2, Pergarnon, London, 1966, p 962 deposited Further crystals (208 nig) were obtained after concentration of the mother liquor (total yield 426 mg, 73). Recrystallisation from hexane gave the trifluoroacetate, m.p. 178-184' ; vmax. 3 518, 1778, and 1695 cm-l; T(CC1,) 9.34 (s, 18-H,), 9.12 (s, 19-H,), and 7.83 (s, 2l-H,) (Found: C, 64.1; H, 7.6; F, 13.4. C,,H,,F,O, requires C, 64.1; H, 7.7; F, 1 3.25 76). 3/3,17a-L)ihydroxy-17~-methyl-~-houno-5a-androstan-17a-one 3-trifluoroacetate (2; 3P-CF,C02, 5a). (a) By rearrange- ment of the ketol 3-trifluoroacetate (10). Compound (10) (34 mg) in dimethoxyethane (500 p1) was treated with boron trifluoride-ether (10 pl) and heated at 50 "C for 25 niin.The solution was then poured into water. The precipitated steroid crystallized from hexane to give the tr@uoroacetate (2; 3p-CF3CO,, 5a) (21 mg, 627;), needles, m.p. 109-112"; v,,,. 3 560, 3 380, 1 772, and 1 705 cm-l; T(CC1,) 9.14 (s, 19-H,), 8.95 (s, 18-H3), and 8.68 (s, 17P-CH3) (Found: C, 64.0; H, 7.5; F, 13.5. C,,H,,F,O, requires C, 64.1; H, 7.7; F, 13.257/,). (b) By trijluoroacetylation of 3P, 17a-dihydroxy- I 7P-methyl-~-homo-5cc-androstan-17a-one. The procedure (above) for trifluoroacetylation of 3P, 17a-dihydroxy-5a-pregnan-20-0ne afforded the 3-trifluoroacetate of the D-homo-ketol, identical with the sample from (a). 3P, 17aa-Dihydroxy- 17ap-methyl-~-lzoun0-5a-a?zdrostan-17-one 3-tri$uoroacetate (3; 3/3-CF,C02, 5a).This ester was prepared from the 3P-hydroxy-ketol as described for 3P,17a-dihydroxy-5a-pregnan-2O-one. The 3-trifluoro-acetate crystallised from hexane as needles, m.p. 225-231" ; v,,,,,~. 3 490, 1 778, and 1 709 cm-l; r(CCl,) 9.34 (s, 18-H,), 9.15 (s, 19-H,), and 8.89 (s, 17a-CH3). Thermal rearrangement of Ketols (cf. Table 2).--Small quantities (10 mg) of the steroid ketols were sealed into evacuated Pyrex tubes and heated as indicated in Table 2. After cooling to room temperature the products were examined by lH n.m.r. in deuteriated dimethyl sulphoxide (cf. ref. 2). Rearrangement of the ketol (9) with lithium t-hutoxide. Lithium metal (160 mg) was dissolved in a mixture of t-butyl alcohol (25 ml) and heptane (75 ml). The ketol (9) (50 mg) in dimethoxyethane (10 ml) was added to 10 ml of this solution and the mixture was stirred for 30 min at 20 "C, then shaken with aqueous acetic acid (4~).The organic layer was separated, washed successively with saturated aqueous sodium hydrogen carbonate and water, dried, and evaporated; the residue was found (n.m.r.) to consist of reactant ketol (9) (80) and the D-homo-ketol of type (3) (200/,). Rearrangements of ketols with magnesium ethoxide. (a) In xylene-ethanol. A solution of magnesium ethoxide from 24 R. A. Craig and R. E Richards, TYans. Favaday Snc , 1963, 59, 1962. magnesium (15 mg) in ethanol (40 ml) was added to a solution of the ketol (I) (100 mg) in xylene (20 ml), and the ethanol was distilled off slowly over 40 min, the final solution temperature being 130 "C.The cooled mixture was diluted with benzene and washed with aqueous hydro- chloric acid, water, aqueous sodium hydrogen carbonate, and water again (twice). The solvents were removed under reduced pressure; the residue was found (n.ni.r.) to comprise ketols of types (2) and (3) in the ratio 3 : 7. (b) In ethanol. Ethanolic magnesium ethoxide (0.003~ ; 20 ml) containing the ketol (9) (20.1 mg) was heated under reflux. Samples (4ml) were removed at intervals, poured into water, and refrigerated (0 "C). The precipitated solids in each sample were collected, dried at 40 "C, and trimethyl- silylated for g.1.c. analysis (see below). G.1.c. analysis of ketol mixtures. Using a Hewlett-Packard 402 Gas Chromatograph and a 6 ft glass column J.C.S. Perkin I packed with 3q/, QF1 on 80-100 mesh Chromosorb W it was possible to distinguish amongst the trimethylsilyl ethers of the five relevant ketols. Trimethylsilylations, which were slow, were carried out by treating the dried steroid (cn. 7 mg) with a freshly prepared mixture (500 p1) of NO-bistriniethylsilylacetamide (4nil) and chlorotrimethyl- silane (80 111). 'The solution was covered and stored in a desiccator for 4 days. A 1 p.1 portion of this solution was then injected into the column. Retention times, relative to 5a-cholestane (= 1.00) were as follows (all ketol deriva- tives of the 3@-OH, 5a-series): 3@,17a-dihydroxy-5a-pregnan-20-one (9) derivative, 2.10 ; u-homoandrostane derivatives : 17aP-OH, 17aa-Me, 17-0x0 (4),2.25; 17aa-OH, 17a@-Me, 17-ox0 (3), 2.53; 17a-OH, 17@-Me, 17a-ox0 (2), 2.08; 17P-OH, 17a-Me, 17a-0x0, 2.60. 7/1265 Received, 15th JuZy, 19771
机译:1978 173 D-同类固醇。第 7 部分 l 17a-羟基孕甾-20-酮与路易斯酸的 D-同环化机制的进一步研究 作者:David N. Kirk 和 Conor R. McHugh,医学研究委员会类固醇参考资料集,化学系,韦斯特菲尔德学院,汉普斯特德,伦敦 NW3 7ST 三氟化硼在 17a-羟基孕甾-20-酮的 o-同年化中的作用 (1) 是真正的催化作用:动力学和 l@Fn.m.r.合适衍生物重排的数据表明,三氟化硼没有被消耗。然而,反应速率近似于对三氟化硼浓度的二级依赖性。38.1 7a-二羟基-5a-孕甾-20-酮(9)的热重排最初导致与路易斯酸催化反应产生的邻高酮醇相同,尽管长时间的热重排导致异构酮醇的平衡混合物。使用乙醇镁作为具有路易斯酸性和碱性特性的催化剂,即使在动力学控制条件下也能得到 D-honio-ketols 的混合物。提出了一种新的结构(1 3)用于路易斯酸催化的重排中的过渡态:新的特征是质子作为负责将酮醇的两个氧原子保持同步取向的物质,以及通过将每个氧原子与路易斯酸分子配位进行催化。选择 C-16 作为迁移中心归因于与氢桥过渡态的构象刚性相关的空间效应 (13)。我们已经报道了 1-3 一系列研究,多次尝试找到一个完全令人满意的解释 - 对 D-同环化机制的 17~-化,是 495羟基孕甾-20-酮 (1) 在化合物重排条件下 (1) 与路易斯酸催化物的异常形成 (1) 与路易斯酸催化, 一个主要的 4 N. L. Wendlkr 在'分子重排,'编者注。P. de这些挑衅 Mavo 的突出特征。Interscience,New Yo&,1964 年。第 2 卷。DD. 1099-1101 和。A* 1 Part 0, D. N. Kirk and C. R. McHugh, J.C.S. Perkin I, llf4-1121, 以及其中的参考文献。.1977, 893.ti D. N. Kirk 和 M. P. Hartshorn,'类固醇反应机制 - D.N. Kirk 和 A. Mudd,J. Chem. SOC.(C),1970 年,2045 年。“爱思唯尔,阿姆斯特丹,1908 年,第 294-301 页,并参考 8 D. N. Kirk 和 A. Mudd,J.C.S. Perkin I,1975 年,1450 年。其中。莱斯特。其它相关反应495通过13,17键的迁移进行,得到(3)和(4)类型的异构体酮,但转化(1)+(2)涉及16,17-b0nd的特殊迁移。3-~ 我们最近对单环模型化合物 1-乙酰基-2,2-二甲基 h ylc yclopent an01 (5) 的行为进行了研究1,支持了这样一种观点,即 17a-羟基孕酮-20-酮中施加在环 D 上的构象再限制是控制类固醇重排的主要因素,因为柔性模型化合物与类固醇的不同之处在于重排主要通过季碳而不是仲碳的迁移,即使在三氟化硼的催化下, 给予酮醇 (6) 和 (7) 的 BHjyOH Me +JOH 比例约为 4: 1.酮醇 (6) 是碱重排的唯一产物。然而,即使在模型系统中也发生了一些“异常”的次生碳迁移,这表明除了纯构象因素之外,还必须有其他因素参与路易斯酸催化的过程。本文介绍了旨在了解三氟化硼催化特性的进一步研究。我们报告了以下方面的研究:(i)三氟化硼在反应中的作用;(ii)COMe分子内氢键在a-酮类中的相关性;(iii) 3p,l7a-二羟基-5a-孕甾素-2O-酮的热(未催化)重排 (9);(iv)其他催化剂的作用,其性质介于通常使用的J.C.S.Perkin I路易斯酸(三氟化硼或醇盐铝)和钾醇盐等强碱性催化剂之间。这些研究的结果使我们提出了一种新的结构(13),用于路易斯酸-猫分析反应中的过渡结构。(一) 三氟化硼的作用。Turner 认为三氟化硼与酮醇 (1) 反应,生成 (8) 型环络合物(过渡态)。结构(8)意味着三氟化硼至少暂时损失氟离子,以便硼原子可以与两个氧原子同时配位。然而,从以前的工作来看,尚不清楚三氟化硼是否在反应中被消耗,或者它的作用是否真的具有催化作用。此外,在我们自己的工作之前,似乎没有尝试确定反应速率对三氟化硼浓度的依赖性。我们最近报告了模型酮醇重排动力学的测量结果 (5),该结果表明,当三氟化硼以单一浓度使用时,该反应相对于酮醇浓度是一级反应,而对于三氟化硼的反应则为表观零阶反应。3p,17a-二羟基-5a-孕甾-2O-酮(9)与三氟化硼的重排的动力学研究,摩尔比分别为3:4(见实验部分),现在已经得出了类似的结论。这意味着三氟化硼对速率决定步骤没有贡献,这将是无意义的,或者三氟化硼的浓度在整个反应过程中保持有效的恒定。为了进一步阐明与三氟化硼的反应顺序,将类固醇酮醇(9)与三种不同浓度的三氟化硼重新排列,比例为1:42:2。分别测得的酮醇(9)消失的一阶速率常数约为1:2.4:3.3。尽管这些有限的数据不允许进行精确分析,但它们清楚地表明反应速率不是:仅与[BF,]成正比,而是更接近于与[BF3I2成正比,因此我们考虑了涉及两个三氟化硼分子的可能过渡态(如下)。1QFn.m.r.研究证实了反应动力学对三氟化硼不被消耗的影响。为了避免三氟化硼和 3P-羟基之间发生任何复杂的相互作用,并提供内部参考信号,将类固醇 (9) 转化为其 3-三氟乙酸盐 (10)。衍生物(10)和三氟化硼-醚分孢子的溶液,在1,2-二甲氧基乙烷(DME)中分别为0.16~浓度,发出信号76.6(尖锐;OCOCF)和155.8 p.p.m.(宽;BF,)从氟三氯甲烷的上场(见实验部分)。含有相同浓度的两种溶质的单一溶液仅显示相同的两个信号。在密封管中在50“C下加热该溶液20分钟足以引起R.B.Turner,J.Amer.Chem.Soc.,1963,78,3484的完全重排。类固醇(10)转化为(2)型D-高酮醇,但19F信号的面积和化学位移均未受到这种变化的影响,也没有出现新的信号。这些观察结果不仅表明三氟化硼没有被消耗,而且在重排之前或之后,DME溶液中存在的任何类固醇BF复合物的量都非常小。三氟化硼信号对其环境变化的预期敏感性是通过三氟化硼-乙醚配合物与二甲醚的连续稀释来确定的:随着三氟化硼-乙醚的比例从100%降低到2%,19F信号逐渐向上移动了约2.8 p.p.m.。(ii) a-酮醇中的氢键。17%-羟基孕甾-20-酮在非极性溶剂中的i.r.谱图7显示,在3 620和约3 500 cm-l处的OH拉伸带与溶液的浓度基本不变,分别表明非缔合形式和分子内氢键形式之间的平衡。(4)型D-同酮醇证明了17ap-羟基(赤道)和17-氧代基团之间具有很强的分子内氢键,在ca处表现出宽谱带。3 485 cm-l,但 17aa-羟基(轴向)异构体 (3) 只能在其不稳定的麻舟构象中在分子内进行氢键;因此,3 620 cm-l 处的条带比 3 500 cm-l 处的条带更明显。重要数据列于表1(3 700 cm-I附近新增一个小尖峰 表1 1.r.酮类数据(0.005~在CCI中) 未关联的 O-H 拉伸 O-H 拉伸 A“ 相关酮醇 (cm-l) (cm-l) A 尿相关 (10)(2)(3) 3 620 3 600 3 610 3 508 3 490 3 520 0.65 2.0 0.06 ”相关 O-H“的最大吸光度除以”未相关 O-H“的最大吸光度; 这个比例夸大了尖锐的重要性在3 600-3 620 cm-1处达到峰值,用于与参考文献10中给出的数据进行比较;D-同酮醇作为 5a 系列的 3P-三氟乙酰氧基衍生物。归因于羰基拉伸频率的泛音)。由于氢键引起的 O-H 拉伸频率的偏移在 90-112 cn-l 范围内,表明通常在 a-酮醇中发现 0-H -* -O=C 键的强关联.1° 酮醇 (10) 及其重排产物 (3) 的两个能带的相对强度符合构象平衡在决定每种化合物中氢键程度方面很重要的预期, 对于 RN Jones, P.Humphries, F. Herling, and K. Dobriner, J. Amer. Chem. Soc., 1952, 74, 2820.D. K. 福岛, S. Dobriner, M. $3.Heffler、TH Kritchev-sky、F. Herling 和 G. Roberts、J. Avner。Chem. Soc., 1955, 77, 6585.* C. W. Shoppee, N. W. Hughes, and B. C. Newman, J. Chem. SOC.(C),1970, 558.175 分子内氢键 - 只有在每种情况下才有可能获得相对较高能量的构象。(2)型的D-同酮醇似乎基本上存在于溶液中,具有环D的椅子构象,允许氢键,而不是以扭曲船的形式存在,这将缓解强的17p-RiIe,13p-Me相互作用.ll 酮醇(10)和其动力学上有利的热重排的产物(2)中的氢键强度(见下文)与我们提出的过渡态(13)兼容MP 8-.-BF3(13)路易斯酸催化的重排。我们认为后者与热反应(下图)一样,在构象上受到处于转换状态的两个氧原子之间存在质子“桥”的约束(见讨论部分)。(iii) 酮醇的热重排 (9)。3(3-乙酰氧基-17a-羟基-5a-孕甾素-2O-酮(1 1)8在240“C加热时重排,得到含有(2)和(3)型未改变的酮醇(11)(50%)和D-同酮醇的混合物,各收率为15%。这些重排的立体特异性是分子内氢键的结果,如上所述,这促使我们更详细地研究热反应。表 2 记录了我们加热酮醇的结果 (9) 和 表2 酮的热重排 产物酮 (%)反应物 r-----h-酮醇的持续时间 l/“C 加热 (h) (10) (2)h (3? 244 1 50 35 15 (lo) 244 3 0 0 100 (2)(l0k 254 1 0 84 16 a 由 'H n.m.r.:参见参考文献 2 和实验部分, b 3p-OH,5cr系列。在真空密封的耐热玻璃中衍生出(2)型的D-同酮醇。显然,动力学控制的 D-同质化涉及 16,17 键的选择性或特异性迁移,以产生酮醇 (2),酮醇更缓慢地转化为稳定的异构体 (3)。后一种变化可能通过甲基迁移 (17p --+17ap) occzlr,或者更可能通过回归到原始酮醇 (9),该途径已经建立 l2 lo L. Joris 和 P. von R. Schleyer, J. Amer. Chem. Soc., 1968, 90, 4599。l1 R. S. Rosenfeld, J. Amer. Chem. SOC.,1957, 79, 5540;D. Taub, R. D. Hoffsommer, H. L. Slates, C. H. Kuo, and N. L, Wendler, 同上, 1960, 82, 4012;N. L. Wendler, Chem. and Ind., 1958, 1662;四面体, 1960, 11,213.l2R。B. Turner, M. Perelman, and K. T. Park, jun., J. Amer. Chem. SOC.,1957, 79, 1108.用于 D-honio-ketols 的路易斯酸催化平衡。酮醇 (2) 的初始立体特异性形成必须通过环状氢桥过渡态 (12),8 发生,该态与 Turner 假设的 (8) 三氟化硼催化反应具有形式相似性。(四) 使用镁或锂醇盐作为催化剂的重排。由于D-均环化路径主要取决于催化剂的性质(酸性3-5或碱性25495),因此活化配合物有机部分的电子电荷密度和分布似乎是影响选择13,17键或16,17键迁移的一个因素。阴离子过渡态,即使与环状配合物中的金属阳离子 (K+) 密切相关,也有利于 13,17 键迁移,2 而热反应(相关 H+)和所谓的与路易斯酸 [BF 或 Al(OR) ] 的缺电子配合物有利于 16,17 键的无电。基于不同的电负性值(K,0.8;李,1.0;镁,1.2;铝,1.5;因此,B, 2.0) l3 我们研究了丁醇锂和乙醇镁作为替代催化剂。我们期望这些“中间体”催化剂之一能够提供(2)和(3)型重排酮醇的动力学控制混合物,而乙醇镁则满足了这一期望。更碱性的锂试剂仅给出碱催化反应的正常产物 (3),酮醇氧原子具有同取向。2 二甲苯-乙醇中的乙醇镁,相反,酮醇(11)完全重排,得到D-同质酮(2)和(3)的比例为30:70。每隔一段时间对单独回流乙醇中较慢的反应进行采样进行分析,按表3所示的比例得到D-同酮醇。虽然重排主要是表3 酮醇的重排 (1) 在回流乙醇中由乙醇镁重排 Ketols (yo)a 时间 (min) “(1) (3) * (2) (4;0 100 16 36 50 14 50 24 56 11 9 110 21 50 14 14 '' 3p-OH,5a系列的酮醇;通过G.1.C.分析混合物(见经验部分)。在“碱催化”类型中,“酸催化”产物(2)的同时出现表明乙醇镁在反应条件下也能够作为弱路易斯酸发挥作用,尽管它在这方面不如铝醇盐有效。在上述结果的基础上,我们提出了 l3 的“氢桥”结构 (13) 例如,参见 R. T. Sanderson, Chemical Periodicity,' Reinhold, New York, 1960, p. 34。l4 P. Diehl, Helv.物理学报, 1958, 31, 685;另见 N. N. Greenwood 和 R. L. Martin, Quart。修订版, 1954, 8, 1.l5 A. Fratiello 和 C. S. Stover, J. Org. Chern., 1975, 40, 1244.J.C.S. 路易斯酸催化反应中的Perkin I过渡态。桥接氢原子(或质子)而不是 -BF2 基团的概念与需要两个三氟化硼分子(或可能是任何其他路易斯酸)相容,一个分子在每个氧原子上配位。因此,三氟化硼催化的重排在机制上与热过程相似,其中只有氢可以成为桥接物质。路易斯酸 b37 与 17a-羟基氧的配位会增加羟基氢原子的不稳定性。已知将三氟化硼添加到甲醇中14以促进甲醇分子之间的氢键,形成+型(14)的络合物,其可以电离到MeOH,-MeOBF等物质,因此溶液是中等强度的酸。MeS* /Me.0 s-/O----H----'HF3 (14) 在 a-酮醇 (l) 中,路易斯酸可能最初与更碱性的 17a-羟基而不是酮相互作用,15 从而削弱了 OH 键,但在酮醇重排过程中氧原子之间的氢转移似乎更受青睐 图 rc 半二酮自由基阴离子 1 的轨道,通过两个氧原子与路易斯酸分子同时结合。这与氢原子(或质子)从一个氧原子转移到另一个氧原子时 OH 键的相当程度的电离是相容的。D-同质化的“前沿分子轨道”l6分析进一步阐明了其机制。碱基促进的 a-酮醇重排在轨道对称性考虑方面是“允许的”,并且已经根据半二酮自由基阴离子与迁移基团相互作用来描述 l7,这看起来像 l6 I.Fleming,“前沿轨道和有机化学反应”,Wiley-Interscience,伦敦,1976 年;G. B. Gill 和 M. R. Willis,“周环反应”,Chapman 和 Hall,伦敦,1974 年。R. W. Alder,《四面体信件》,1971年,第193页。1978年作为烷基自由基。半二酮自由基阴离子(图1)被认为在离域的x轨道上有五个电子。第六个电子被正式分配给与迁移组相关的轨道。名义上的半二酮自由基阴离子的最高占据分子轨道(HOMO;#3)的对称性允许烷基自由基的协调[1,2]-sigmatropic迁移(图2),并在迁移组中保留构型.6-6-FIGURE 允许对称性[a-酮醇阴离子中的1,21sigmatropic迁移 该轨道模型适用于碱催化的重排;它与半二酮组分的构型(顺式或反式)无关。然而,如果五个电子中的一个从半二酮 x 轨道系统中撤出并分配给羟基氢原子,则图 2 中描述的类型的 [1,2] sigmatropic 位移变得“禁止”,以允许它在 thermaZ 过程中保持与 n 系统的共价键合。那么半二酮的 HOMO 为 2 美元,它具有协调一致的 [l,2] 烷基迁移的错误对称性。此外,x系统末端之间的氢转移需要是不太可能的正面[1,4]类型。如果,在其他 6 -.s-F3 BF3 环 C 图 对称允许的 a-酮醇重排涉及 3 个 TC 轨道('垂直'p 裂片)和同步对称允许的孤对电子('水平'p裂片)之间的氢迁移,用 BF,催化手,热重排的过渡态可视化为包括半二酮的 x 轨道与迁移烷基的六电子组合, 就像在碱催化过程中一样,当氢原子(质子)在两个氧原子上的“孤对电子”之间同步转移时,在G框架的平面上,轨道对称性“允许”过程的两个部分。图 3 将 x 轨道系统描述为 * 为了简单起见,图 3 描绘了 BF,它附着在 0----H 键合 p 轨道的“后瓣”上,假设 sp 杂化氧;另一种但更拥挤的绘图,在氧气下进行 sp 杂化,将允许 0---H 和 0----BF,通过单独的 sp 杂化轨道键合;这与重排的轨道对称性要求并不冲突。177 与包含O键框架[O-C(ZO)-C(l7)-0]和每个氧原子上p型对称的共面“孤对”轨道的平面正交,质子在这些“孤对”轨道之间转移。(为了保持所有电中性,迁移的氢被正式视为质子,以平衡分配给x轨道系统的额外电子。Hoffmann和他的同事们对由三个D键隔开的原子上的孤对电子的通键耦合进行了定性微扰处理,表明HOMO可以表示为图4所示类型的原子轨道的对称组合。根据该模型,通过路易斯酸与氧的结合,质子松动促进了路易斯酸催化的再反应 --%.-T HOMO(Sl FIGURE 孤对电子的通键相互作用:对称4分类(S和A)相对于将四原子系统一分为二的“垂直”平面(参见参考文献18)(0 * -* H键的电离趋势增加)反应的轨道对称特征与热工况相同。这种描述表示热态和路易斯酸催化的过渡态都具有一些偶极性特征,对应于迁移质子和名义自由基阴离子的同时存在。然而,在描述碱催化反应时,与分子框架正式相关的电荷分布没有质的区别。这一结论与我们早期对吸电子s~bstituents~的影响的Hammett型处理是一致的,~表明取代基特性对反应速率的影响出乎意料地小。碱催化的酮醇重排 (1) 在质子溶剂中通过过渡态进行,其中 17a- 和 20 氧原子处于反构象,来自立体化学证据.6 然而,偶极非质子溶剂 (KOBut-Me2SO) 中的碱催化重排,与热和路易斯酸催化过程一样,涉及一个共构象,其中阳离子 (K+) 被假定与反应 ket01 的两个氧原子相关.~ 在试图解释因此,在酸性和碱性催化下迁移基团的选择不同,我们考虑了R.Hoffmann,Accounts Chem. Res.,1971,4,1;C. C. Levin、R. Hoffmann、W. J.Hehre 和 J. Hudec,J. C. S. Perkin II,1973 年,第 210 页。各种阳离子与半二酮自由基阴离子之间的相互作用。简单的半二酮自由基阴离子存在于可互转换的顺式和反式构型中.19 最近的一项研究表明,锂阳离子选择性地稳定顺式异构体,可能是通过同时与两个氧原子的强静电相互作用。然而,较大的阳离子Na+和K+与氧原子的结合强度较低,并且允许阴离子物种在实验条件下主要以反式构型存在。Li+ 的离子半径仅为 K+ 的一半,而 H+ 实际上是一个点电荷,并且应该在其顺式结构中与半二酮自由基阴离子(或烯二醇二离子离子)的两个氧原子相互作用最强烈。因此,我们提出,处于过渡态的“桥接”质子对酮醇重排的作用是在类型(12)和(13)的过渡态上施加最大的构象刚性。相比之下,阴离子与K+的结合相对较弱,因此可能允许在过渡态中构象具有一定的灵活性,以便重排(参见半二酮自由基阴离子的e.s.r.数据,lV,其中测量参数的变化被认为表明在某些情况下偏离了严格的平面性)。16,17键迁移(12)和(13)的“桥接”过渡态的剥离模型以及C-13的替代迁移(15)表明,随着配合物达到C-13 6-V迁移所需的过渡态(15),空间应变,特别是C-18和C-21甲基之间的压缩将增加,C-16的迁移,相反,避免了过渡态空间应变的增加;与过渡态之前的氢键酮醇相比,甲基之间的压缩甚至可能有一些松弛。此外,如前所述,2o过渡态(12)或(13)是“发育椅”型的,因此在构象上是有利的。烷基的相对迁移能力问题经常被讨论。通常发现,对于阳离子重排,季级碳优先于三级或二级基团迁移.21迁移基团参与阳离子电荷离域的能力被认为很重要。阴离子系统中的反应较少 l9 G. A. Russell, D. F. Lawson, H. L. Malkus, R. D. Stephens,G. R. Underwood, T. Takano, and V. Malatesta, J. Amer. Chem. Soc., 1974, 98, 5830, and references in there.(《阴离子系统中的反应较少l9》 G. A. Russell, D. F. Lawson, H. L. Malkus, R. D. Stephens, G. R. Underwood, T. Takano, and V. Malatesta, J. Amer. Chem. Soc., 1974, 98, 5830, and references in there..** I. Elphimoff-Felkin 和 A. Skrobek,公牛。SOC. chim.法国,1959年,第742页;N. L. Wendler、D. Taub 和 R. W. Walker,四面体,1960 年,11 年,163 年。J.C.S.公司Perkin I 很常见,并且不太了解,但是我们的单环模型酮醇 (5) 提供的证据表明,尽管类固醇酮醇的 D-同质化过渡态的过渡态有必要的 ' 船构象,但四元碳原子的迁移存在电子偏好。虽然通常认为溶液中的碳阴离子稳定性表明烷基取代基具有不稳定作用,但最近的 MO 计算和气相实验表明,负电荷可以通过高度取代的烷基稳定,22 通过极化率效应。无论采用何种解释,我们的模型实验都清楚地表明,在不受强烈顺应约束的 g-酮醇中,季级碳而不是次级碳的迁移具有普遍的偏好。因此,我们提出,在热催化反应和酸催化反应中,倾向于反对叔烷基而不是伯烷基迁移的正常偏好的特殊特征是特殊的构象刚性,以及由此产生的空间压缩的最大化,这是由于在过渡态中需要'桥接质子而施加的。相反,非质子碱性系统中的“桥接”钾阳离子2仅对同向的“半二酮”的构象施加微弱的控制,允许通过构象扭曲来缓解应变,远离严格的共面性,观察到的乙醇镁的双重行为很可能是两种机制之间的竞争的结果。作为碱,试剂可能会引起阴离子重排,其中 Mg2+ 是桥接两个氧原子的物质,而每个氧原子与乙醇镁分子的配位可能允许路易斯酸类型的竞争性氢桥反应。实验 有关试剂等的一般说明,请参见参考文献 3。1,2-二甲氧基乙烷(40ml)中的酮醇(9)(80mg,0.24mmol)用三氟化硼-醚络合物(40pl,0.32mmol)处理3p,17u-二羟基-5u-~regnun-2O-one(9)的复尿。将混合物立即分布在8个塞管中,这些管在49.5“C下孵育,通过向管中加入饱和碳酸氢钠水溶液(25ml)在适当的时间间隔后进行取样,然后加入水(20ml)。收集沉淀的有机物质并用水洗涤,然后用热乙醇(4ml)吸收。减压除去溶剂,用氘代二甲基亚砜中的lH n.m.r.检查残留的干固体(见参考文献2)。通过比较 z 9 处峰的积分来估计反应的估计值。60 (18-H, 在反应物中) 与T 9.25 处不变的峰(19-H, 在反应物和产物中)。以 3 分钟(从 3 分钟到 21 rnin)的间隔采集样品的反应范围为 20.5% 至 82.8%,W. von E. Doering 和 L. Speers, J. Amer. Chem. Soc., 1950,72, 5515;M. Stiles和R. P. Mayer,同上,1969年,第81页,第1497页。22 T.P.刘易斯,四面体,1969年,25,4117;H. M. Niemeyer,同上,1977年,第33页,第775页。分别;关于类固醇反应物的线性一级图给出 k = 1.38 x lop3s-l(在 49.5 “C 时)。(B)使用酮醇(9)(80mg,0.24mmol)和三氟化硼-醚(56.5p1,0.45mmol)的类似反应,每隔1.5分钟取样,得出关于类固醇的一阶图;K =I 3.27 x s-l(49.5“C时)。(C)与(A)和(B)相似的反应,但三氟化硼-醚酯增加到80 pl(0.64 mmol),并以1 niin的间隔取样,给出了关于类固醇的线性一级图;k = 4.60 x lo-, s-l (在 49.5 “C) 时)。lSFN.m.r 三氟化硼消耗调查-使用瓦里安 HA-100 光谱仪,锁定三氟乙酸酯基团。回收的氘代二甲基亚砜中的类固醇表现出与纯3P,17a-二羟基-17P-甲基-u-高-5a-雄甾烷-17a-酮(2;3P-OH,5a)相同的n.m.r.谱图。制备 3-三羟乙酸酯-3P,17a-二羟基-5a-孕甾素-20-酮 3-三,若酰乙酸酯 (10).3/3,17cc-二羟基-5cc-孕甾-20-酮(9)(448mg)与无水苯(200ml)搅拌,同时加入三氟乙酸酐(5ml)。3分钟后获得澄清溶液,再放置25分钟。然后在减压下除去溶剂和过量的试剂,并将残留物吸收在回流己烷(100 nil)中。过夜,白色晶体(218 mg)频率为1 546 Hz,1,1,2-三氯-3,3,3-三氟丙烯(TCFP)作为外部参比。在30“C.(A)纯三氟化硼醚下研究了以下体系。这显示了TCFP上场91.46的单峰。给定2,TCFP信号是CFCI的62 p.p.m.上场,三氟化硼共振是CFCI上场153.5 p.p.m.,与报告的值相同.24 (B)二甲氧基乙烷中的三氟化硼醚.通过向二甲氧基乙醚中加入三氟化硼-醚来配制溶液。表4 TABLE4 19Fi%.rii中列出的化学位移。我-。BF,*Et20溶液在DME中的光谱 l9F信号的位移摩尔比(p.p.m. RF,.Et,O 到 DME 上场从 CFC1,) 100% BF,.Et,O 153.5 1.65:1 154.5 0.825 : 1 155.1 0.413 : 1 155.6 0.165 : 1 156.1 0.041 : 1 156.2 (6) 0.017 : 1 156.2(8) 0.008: 1 156.3(3) 相对于 CFC1,根据相对于 TCFP +62 p.p.m. 的测量值计算得出(见上文)。在低浓度BF时,峰变宽。(C) 3P,17a-IM~ydroxy-5a-孕甾南-20-酮3-triflz~卵乙酸酯 (10)(制备见下文)。化合物 (10) (34.3 mg)的二甲氧基乙烷(500 pl)显示TCFP前场14.6 p.p.m(CFC1前场76.6 p.p.m)的尖锐单线态。(D)3p,17a-l~羟基-5~-孕甾-2O-酮3-三氟乙酸酯(10)和硼trzjluoride-ether(反应前混合物)。将酮醇3-三氟乙酸酯(10)(34.3mg,0.08mmol)在n.m.r.样品管中的二甲氧基乙烷(500p1)中的冷却溶液(0“C)用三氟化硼醚(10pl,0.08mmol)处理。立即密封试管,混合内容物并用 n.m.r. 检查(在这些条件下不会发生重新排列)。在下午76.6点观察到一个尖锐的单线,在下午155.8点观察到一条等面积的宽线(相对于CFC1)。(E) 混合物。(四)反应后。将(D)的样品管在50“C的油浴中加热20分钟,并使其冷却。N.M.R.检查再次显示76 6 p.p.ni 的尖锐单体。在155.8 p.p.m.p.m处,在同一区域的宽线 在n.m.r.检查后,立即将混合物倒入饱和碳酸氢钠水溶液中。收集沉淀的固体,然后用甲醇(20 m1)吸收,并用碳酸钾(1 g)在水(2ml)中搅拌过夜以除去 23 J. Emsley、J. Feeney 和 L. Sutcliffe,“高分辨率核磁共振波谱”,第 2 卷,Pergarnon,伦敦,1966 年,第 962 页沉积 在母液浓缩后获得进一步的晶体(208 nig)(总产率 426 mg, 73%).己烷重结晶得到三氟乙酸盐,熔点178-184';vmax。3 518、1778 和 1695 cm-l;T(CC1,) 9.34 (s, 18-H,), 9.12 (s, 19-H,) 和 7.83 (s, 2l-H,) (发现: C, 64.1;H,7.6;F,13.4。C,,H,,F,O,需要C,64.1;H,7.7;F, 1 3.25 76)。3/3,17a-L)羟基-17~-甲基-~-houno-5a-雄甾烷-17a-酮 3-三氟乙酸酯(2;(a) 通过重新排列酮醇 3-三氟乙酸酯 (10)。化合物(10)(34mg)在二甲氧基乙烷(500 p1)中用三氟化硼醚(10 pl)处理,并在50“C下加热25niin。然后将溶液倒入水中。沉淀的类固醇由己烷结晶,得到tr@uoroacetate(2;3p-CF3CO,,5a)(21mg,627;),针头,熔点109-112“;v,,,.3 560、3 380、1 772 和 1 705 cm-l;T(CC1,) 9.14 (s, 19-H,), 8.95 (s, 18-H3) 和 8.68 (s, 17P-CH3) (发现: C, 64.0;H,7.5;F,13.5。C,,H,,F,O,需要C,64.1;H,7.7;F,13.257/,)。(b) 通过三甲基乙酰化3P,17a-二羟基-I 7P-甲基-~-高-5cc-雄甾烷-17a-酮。3P,17a-二羟基-5a-孕甾-20-0ne的三氟乙酰化程序(如上图)得到了D-高酮醇的3-三氟乙酸盐,与(a)中的样品相同。3P,17aa-二羟基-17ap-甲基-~-lzoun0-5a-a?zdrostan-17-酮3-三氟乙酸酯(3;3/3-CF,C02,5a)。该酯由3P-羟基酮醇制备,如3P,17a-二羟基-5a-孕酮-2O-酮所述。由己烷结晶为针状的3-三氟乙酸酯,熔点225-231“;v,,,,,~。3 490、1 778 和 1 709 cm-l;r(CCl,) 9.34 (s, 18-H,), 9.15 (s, 19-H,) 和 8.89 (s, 17a-CH3)。酮醇的热重排(参见表2).--将少量(10mg)类固醇酮醇密封到真空的耐热玻璃管中并加热,如表2所示。冷却至室温后,在氘代二甲基亚砜中通过lH n.m.r.检查产物(参见参考文献2)。酮醇 (9) 与锂 t-hutoxide 重排。将锂金属(160mg)溶解在叔丁醇(25ml)和庚烷(75ml)的混合物中。将酮醇(9)(50mg)的二甲氧基乙烷(10ml)加入到10ml该溶液中,将混合物在20“C下搅拌30分钟,然后用乙酸水溶液(4~)振荡。分离有机层,先后用饱和碳酸氢钠水溶液和水洗涤,干燥,蒸发;发现残基 (N.M.R.) 由反应物酮醇 (9) (80%) 和类型 (3) 的 D-高酮醇 (200/,) 组成。酮与乙醇镁的重排。(a) 二甲苯乙醇。乙醇镁溶液[来自 24 R. A. Craig 和 R. E Richards, TYans.Favaday Snc , 1963, 59, 1962.将乙醇(40ml)中的镁](15mg)加入到二甲苯(20ml)中的酮醇(I)(100mg)溶液中,并在40分钟内缓慢蒸馏乙醇,最终溶液温度为130“C。冷却后的混合物用苯稀释,并用盐酸水溶液、水、碳酸氢钠水溶液和水再次洗涤(两次)。减压除去溶剂;发现残基(n.ni.r.)以3:7的比例包括(2)和(3)型酮。(b) 在乙醇中。将含有酮醇(9)(20.1mg)的乙醇酸镁乙醇(0.003~;20ml)加热回流。间隔取出样品(4ml),倒入水中,冷藏(0“C)。收集每个样品中的沉淀固体,在40“C下干燥,并进行三甲基硅烷化g.1.c。分析(见下文)。G.1.c. 酮醇混合物的分析。使用惠普 402 气相色谱仪和 6 英尺玻璃色谱柱 J.C.S. Perkin I 在 80-100 目 Chromosorb W 上填充 3q/、QF1,可以区分五种相关酮醇的三甲基硅烷基醚。通过用新鲜制备的NO-bistriniethylsilylacetamide(4nil)和氯三甲基硅烷(80 111)的混合物(500 p1)处理干燥的类固醇(cn.7mg)进行缓慢的三甲基硅烷化。“溶液被盖上并储存在干燥器中 4 天。然后将该溶液的 1 p.1 部分注入色谱柱中。相对于5a-胆甾烷(= 1.00)的保留时间如下(3@-OH,5a系列的所有酮类衍生物):3@,17a-二羟基-5a-孕激素-20-酮(9)衍生物,2.10;u-高雄甾烷衍生物 : 17aP-OH, 17aa-Me, 17-0x0 (4),2.25;17AA-OH, 17a@-Me, 17-ox0 (3), 2.53;17a-OH, 17@-me, 17a-ox0 (2), 2.08;17P-OH,17a-me,17a-0x0,2.60。[7/1265 收稿日期,19771 年 15 月 15 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号