首页> 外文期刊>Applied and Environmental Microbiology >Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland
【24h】

Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland

机译:热带湿地微生物还原天然有机质驱动的厌氧甲烷氧化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with C-13-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5 of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for similar to 100 nmol (CH4)-C-13 oxidized center dot cm(3)center dot day(1). Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH(4 center dot)year(-1) in coastal wetlands and more than 1,300 Tg center dot year(-1), considering the global wetland area.
机译:湿地因其高含量的天然有机物 (NOM) 而成为地球上甲烷的主要天然来源,但支持这些栖息地中甲烷营养活动的关键驱动因素,如电子受体,却知之甚少。我们使用新鲜收集的沉积物以及从热带湿地收获的水样进行缺氧孵育,并用 C-13-甲烷 (0.67 atm) 进行修正,以测试其微生物群落进行甲烷厌氧氧化 (AOM) 的能力,该氧化与其 NOM 的腐殖质部分的减少有关。 收集的证据表明,接受电子的官能团(例如, 醌)存在于 NOM 中,通过充当末端电子受体来推动 AOM。事实上,虽然硫酸盐还原是主要过程,占AOM活性的42.5%,但NOM的微生物还原也随之而来。此外,外部NOM对湿地沉积物的富集提供了互补的电子接受能力,其还原量与100 nmol(CH4)-C-13氧化中心点厘米(3)中心点日相似(1)。光谱证据显示,湿地沉积物中醌部分呈非均质分布,且在AOM过程中醌部分减少。此外,来自湿地沉积物的富集进行AOM与NOM化学计量氧化甲烷还原与腐殖酸类似物蒽醌-2,6-二磺酸盐的还原相结合。可能参与 AOM 与 NOM 微生物减少相结合的微生物种群以来自假定的 AOM 相关古细菌的不同生物群为主。考虑到全球湿地面积,我们估计这种微生物过程可能有助于抑制沿海湿地中高达 114 太克 (Tg) 的 CH(4 中心点)年(-1)和超过 1,300 Tg 的中心点年(-1)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号