首页> 外文期刊>mendeleev communications >Unusual reaction of aziridine dimer with acetylene dicarboxylates
【24h】

Unusual reaction of aziridine dimer with acetylene dicarboxylates

机译:氮丙啶二聚体与乙炔二羧酸酯的异常反应

获取原文
获取外文期刊封面目录资料

摘要

Mendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47–86) Unusual reaction of aziridine dimer with acetylene dicarboxylates Remir G. Kostyanovsky,*a Yurii I. El’natanov,a Ivan I. Chervin,a Mikhail Yu. Antipinb and Konstantin A. Lyssenkob a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156 b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813 Moscow, Russian Federation.Fax: +7 095 135 5085 The 1-(2-aminoethyl)aziridine (aziridine dimer) 1 reacts with acetylene dicarboxylates to give 1,4-diaza- 5-oxobicyclo4.3.0nonanes (7-azaindolizines) 3 together with the usual enamine adducts 4; the product structures are confirmed spectroscopically and, in the 3 also by X-ray diffraction and by an independent synthesis from furan 5.Treatment of the aziridine dimer 11 and the terminally labelled dimer 1-15NH2 † with acetylene dicarboxylates 2a,b afforded the 7,8,9-tris(alkoxycarbonyl)-1,4-diaza-5-oxobicyclo4.3.0nonanes 3a–c, along with the usual adducts (E)- and (Z)-4a–c (Scheme 1). The structures of 3,4 were confirmed spectroscopically‡ (Figure 1).The structure of 3a was also confirmed by X-ray diffraction§ (Figure 2) and also by an independent synthesis of 3b from furan 53,‡ (Scheme 2). The formation of 3a,b which is also accompanied by ethylene elimination and 15N label randomization can be explained by the transformations † NMR spectra were recorded at 400 MHz (1H) and 100.61MHz (13C). The aziridine dimer 1-15N was prepared by the reduction of aziridinoacetamide-15NH2 (LiAlH4 in boiling THF, 12h), yield 12.3, bp 127 °C; 1H NMR (CDCl3): d 1.13 (m) and 1.72 (m) (2×2H, CH2 ring), 1.43 (br.s, 2H, HN), 2.26 (dt, 2H, a-CH2, 3JHH 5.8, 3JHN 2.1Hz) and 2.85 (dt, 2H, b-CH2, 2JHN 0.9Hz); 13CNMR (CDCl3): d 26.6 (dd, CH2 ring, 1J 163.7 and 173.4 Hz), 41.79 (ddt, b-CH2, 1J 133.2, 2J 2.8, 1JCN 4.2 Hz) and 64.36 (dt, a-CH2, 1J 133.2, 2JCN 1.4 Hz).The starting material aziridinoacetamide-15NH2 was prepared from ethyl aziridinoacetate2 by amidation with 15NH3 (90 of 15N) in MeOH–MeONa, 7days at 20°C; yield 89.4, mp 88 °C; 1HNMR (CDCl3): d 1.27 (m) and 1.84 (m) (2×2H, CH2 ring), 2.90 (s, CH2CO) and 6.72 (2H, HAHB 15N, ABX spectrum, Dn =200, 2JAB 4.3, 1JBX 89.5, 1JBX 90.3Hz); 13C {1H} NMR (CDCl3): d 27.4 (s, CH2 ring), 63.4 (d, CH2CO, 2JCN 5.6 Hz) and 173.0 (d, CO, 1JCN 15.3Hz).indicated in Scheme 3. The key stages of the proposed mechanism are confirmed by the known easy ethylene ‡ Spectroscopic data for 3a: obtained from 1 and 2a in Et2O at 20 °C, 1h; yield 19.1, mp188–189°C. Found: C, 50.41; H, 4.48; N, 9.12. Calc. for C13H14N2O7: C, 50.32; H, 4.55; N, 9.03. 1HNMR (2H8toluene): d 2.73 (m, 2H, 3-CH2), 3.62 (m, 2H, 2-CH2), 3.54 (s), 3,62 (s) and 3.71 (s) (3×3H, MeO), and 7.30 (br.s, 1H, HN); 13C NMR (2H6DMSO): d 38.52 (t, 3-CH2N, 1J 141.0 Hz), 43.65 (2-CH2, 1J 146.4 Hz), 51.56 (q), 52.05 (q) and 52.36 (q) (3MeO, 1J 147.7Hz), 118.3 (s), 119.2 (s) (7- and 8-C), 122.64 (s, 9-C) and 125.58 (dt, 6-C, 3JCNCH 2.7, 3JCCNH 5.6Hz), 156.81 (q, 5-C, 2J = 3J = 4.2 Hz), 159.32 (q), 162.88 (q) and 163.29 (q) (CO2Me, 3J 4.2Hz); MS (EI, 70 eV, 240 °C): m/z (): 310 (34.3) M+, 280 (15), 279 (100), 59 (13.2).For 3b: obtained from 1 and 2b in Et2O at 20 °C, 18 h, yield 31, or quantitatively from 6 in 2H8toluene in a sealed tube at 140 °C, 1h; mp140–141°C. Found: C, 54.62; H, 5.68; N, 8.10. Calc.for C16H20O7N2: C, 54.54; H, 5.72; N 7.95. 1H NMR (2H8toluene): d 1.08 (t), 1.13 (t) and 1.21 (t) (3×3H, Me, 3J 7Hz), 2.47 (br. m, 2H, 3- CH2), 3.53 (br.m, 2H, 2-CH2), 4.07 (q), 4.19 (q) and 4.33 (q) (3×2H, 3CH2O) and 7.41 (br. s, 1H, HN); 13C NMR (CD3OD): d 14.32 (q, 2Me, 1J 126.2 Hz), 14.38 (Me, 1J 127.4Hz), 40.43 (tt, 3-CH2, 1J 142.9, 2J 2.8 Hz), 45.14 (tt, 2-CH2, 1J 147.0, 2J 2.8 Hz), 62.64 (tq, 2CH2O, 1J 148.4, 2J 4.2 Hz), 62.9 (tq, CH2O, 1J 148.2, 2J 4.2 Hz), 120.79 (s), 122.65 (s) and 124.6 (s) (9-, 7-, 8-C), 127.02 (m, 6-C, 3J 2.8 Hz), 159.96 (t, 5-C, 2J 4.2 Hz), 160.73 (m), 165.11 (m) and 165.15 (m) (CO2Et, 3J 4.2 Hz).For 3c: yield 12.1, mp 143–144 °C (PriOH); 1H NMR (2H8toluene): 1.09 (t), 1.14 (t) and 1.23 (t) (3×3H, 3Me, 3J 7.0Hz), 2.45 (br.m, 2H, 3-CH2, 2JHN 1.8 Hz), 3.5 (br.m, 2H, 2-CH2, 3JHN 2.1Hz), 4.08 (q), 4.20 (q) and 4.33 (q) (3×2H, 3CH2O) and 6.65 (d, 1H, HN, 1JHN 91.6Hz); 13C NMR (CD3OD): 14.31 (q, 2Me, 1J 126.2Hz), 14.42 (Me, 1J 127.4Hz), 40.43 (ttd, 3-CH2, 1J 142.9, 2JCH 2.8, 1JCN 8.4Hz), 45.14 (ttd, 2-CH2N, 1J 147.0, 2JCH 2.8, 1JCN 7.7Hz), 62.61 (tq), 62.62 (tq) and 62.9 (tq) (3CH2O, 1J 148.2Hz), 120.8 (dd, 7-C, 2J = 3JCN =2.9Hz), 122.63 (d, 8-C, 2JCN 4.2 Hz), 124.58 (d, 9-C, 1JCN 14.6Hz), 126.96 (d, 6-C, 1JCN 4.5Hz), 159.93 (d, 5-C, 1JCN 16.7Hz), 160.73 (m), 165.08 (m) and 165.14 (m) (CO2Et, 3J 4.2 Hz).For 4a: (Z : E, 3:1), yield 36.3. For (Z)-4a: 1H NMR (CDCl3): d 1.12 (m) and 1.75 (m) (4H, 2CH2 ring), 2.34 (t, 2H, a-CH2, 3J 6.0Hz), 3.53 (td, b-CH2, 3JHCNH 6.0 Hz), 3.65 (s) and 3.81 (s) (2×3H, 2MeO), 5.07 (s, 1H, HC= ), 8.31 (br.s, 1H, HN).For (E)-4a: 1H NMR (CDCl3): d 1.15 (m) and 1.74 (m) (4H, 2CH2 ring), 2.41 (t, 2H, a-CH2, 3J 6.0Hz), 3.13 (td, 2H, b-CH2, 3JHCNH 6.0 Hz), 3.62 (s) and 3.86 (s) (2×3H, 2MeO), 4.64 (s, 1H, HC= ) and 5.3 (br. s, 1H, HN). For 4b, 4c: (Z : E, 1.2 : 1), yields 27. (Z)-4b: 1H NMR (CDCl3): d 1.12 (m) and 1.74 (m) (4H, 2CH2 ring), 1.24 (t) and 1.34 (t) (2×3H, 2Me, 3J 7.0 Hz), 2.34 (t, 2H, a-CH2, 3J 6.1 Hz), 3.53 (td, b-CH2, 3JHCNH 6.1Hz), 4.07 (q) and 4.25 (q) (2×2H, 2CH2O), 5.05 (s, 1H, HC= ), 8.30 (br.s, 1H, HN).(Z)-4c: 1H NMR (CDCl3): d 1.12 (m) and 1.74 (m) (4H, 2CH2 ring), 1.24 (t) and 1.33 (t) (2×3H, 2Me, 3J 7.0 Hz), 2.34 (dt, 2H, a-CH2, 3JHH 6.1, 3JHN 2.8 Hz), 3.53 (tdd, 2H, b-CH2, 2JHCN ca. 1, 3JHCNH 6.1Hz), 4.08 (q) and 4.24 (q)(2×2H, 2CH2O), 5.04 (d, 1H, HC=, 3JHN 4.0 Hz) and 8.26 (dt, 1H, HN, 1JHN 90.4 Hz). (E)-4b: 1H NMR (CDCl3): d 1.16 (m) and 1.74 (m) (4H, 2CH2 ring), 1.23 (t) and 1.33 (t) (2×3H, 2Me, 3J 7.0Hz), 2.41 (t, 2H, a-CH2, 3J 6.0 Hz), 3.13 (td, b-CH2, 3JHCNH 6.0 Hz), 4.10 (q) and 4.30 (q) (2×2H, 2CH2O), 4.64 (s, 1H, HC= ) and 5.09 (br.s,1H, HN). (E)-4c: 1H NMR (CDCl3): d 1.15 (m) and 1.74 (m) (4H, 2CH2 ring), 1.23 (t) and 1.35 (t) (2×3H, 2Me, 3J 7.0Hz), N NH2 + E C C E N NH E E E O + + N NH E E E O * + * N NH E E H N NH E H E * * * 1 2 3 4 5 6 7 8 9 1 2a,b 3a–c (E)-4a–c (Z)-4a–c a E = CO2R, *N = 14N, R = Me b E=CO2R, *N = 14N, R = Et c E = CO2R, *N = 15N, R=Et Scheme 1 D O E E E E H2N NH2 NH N HB HC HF E E E E HE HO HA HD + 3b E=CO2Et Scheme 2 1 2 3 4 5 6 7 5 6Mendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47–86) elimination from aziridinium ylides4 the first intermediate zwitterion in Scheme 3 can be represented as a mesomeric form of carbenaziridinium ylide (CAI) and by the isolation of the intermediate 6 before the lactamization in 3b (Scheme 2). This work was accomplished with financial support from 2.41 (br.m, 2H, a-CH2, 3.12 (tdd, b-CH2, 2JHCNH 6.1 Hz), 4.10 (q) and 4.29 (q) (2×2H, 2CH2O), 4.62 (d, 1H, HC=, 3JHN 1.5 Hz), 5.37 (dt, 1H, HN, 1JHN 93Hz). Furan 5, under the action of ethylene-1,2-diamine in toluene (14 days, 20°C) gave intermediate 6. The latter was isolated by gradient chromatography (silica gel, heptane–ethyl acetate, 0® 60), yield 24, colourless oil.Found: C, 52.10; H, 6.69; N, 6.82. Calc. for C18H28N2O9: C, 51.92; H, 6.78; N, 6.76. 1H NMR (CDCl3): d 1.11 (t), 1.13 (t) and 1.20 (t) (3×3H, 3Me, 3J 7.0 Hz), 2.29 (dt, 1H, HA, 2JAB –10.4, 3JAC 10.4, 3JAD 5.8Hz), 2.83 (dt, 1H, HB, 3JBC 5.8, 3JBD 10.4 Hz) and 3.02 (ddd, 1H, HC, 2JCD –11.6Hz), 3.08 (ddd, 1H, HD), 3.43 (d, 1H, HF, 3J 12.5Hz), 4.32 (1H, HE), 4.03 (m), 4.11 (m) and 4.13 (m) (3×2H, 3CH2); 13C NMR (CDCl3): d 13.62 (q), 13.71 (q) and 13.81 (q) (3Me, 1J 127.9Hz), 45.36 (dd, 7-C, 1J 138.1 and 143.9Hz), 48.22 (dd, 6-C, 1J 138.1 and 143.9 Hz), 52.14 (dd, 3-C, 1J 133.7, 2J 4.4 Hz), 54.48 (dd, 4-C, 1J 138.1, 2J 5.8Hz), 89.81 (m) and 89.87 (m) (2-C and 4-C, 2J, 3J 4.4Hz), 168.14 (m) and 169.54 (m) (CO, 2J 7.3, 3J 4.4 Hz), 171.36 (m) and 172.1 (m) (C=O, 3J 4.4 Hz).§ Crystal data for 3a: C13H14N2O7 (from PriOH): monoclinic, space group P21/n, at 293K: a =10.222(12), b =7.903(8), c = 18.07(2) Å, b = 102.88°, V =1423(3)Å3, Z =4, dcalc =1.448gcm–3, m = 1.19 cm–1, F(000)=648. Intensities of 2760 reflections were measured with a Siemens P3/PC diffractometer at 293 K (MoKa radiation, graphite monochromator, q/2q-scan method, 2q 2s(I) were used in the further calculations.The structure was solved by direct method and refined by the least-squares against F in an anisotropic-isotropic (H-atoms) approximation to R =0.065, vR = 0.062, GOF=1.69. All calculations were performed using the program package SHELXTL PLUS (ver. 5). Full lists of bond lengths, bond angles, atomic coordinates and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Notice to Authors, Mendeleev Commun., 1997, issue 1.Any request to the CCDC for this material should quote the full literature citation and the reference number 1135/13. NH N H E E E E * HN NH E E E E * HN N H E E E E * N E E E E NH2 * N E E E E NH2 * –C2H4 –EtOH + – * N E E E E NH2 * N E E E E NH2 * N E E E E NH2 – + – + 3c 1-15N + 2× 2b *N = 15N Scheme 3 CAI Figure 1 (a) 1H NMR spectrum of the 4-NH proton of 3c and (b) 13C {1H} NMR spectrum of the 2-C and 3-C carbon atoms of 3c. 2-C15N 2-C14N 3-C15N 3-C14N 45.14 40.43 H15N H14N 6.8 d d (a) (b) Figure 2 Crystal structure of 3a. Selected bond lengths (Å) and angles (°): N1–C1 1.383(6), C1–C2 1.385(6), C2–C3 1.401(6), C3–C4 1.402(6), C4–N1 1.373(6), C4–C5 1.477(6), C5–N2 1.347(6), N2–C6 1.459(7), C6–C7 1.509(7), C7–N1 1.476(5); C1N1C4 109.7(3), N1C1C2 106.7(4), C1C2C3 109.2(4), C2C3C4 106.5(4), C3C4N1 107.9(4), C4N1C7 122.5(4), N1C4C5 120.2(4), C4C5N2 114.6(4), C5N2C6 122.6(4), N2C6C7 111.6(4), C6C7N1 107.7(4), C1N1C7 127.8(4), C3C4C5 131.3(4). C(11) C(9) O(3) C(8) O(2) O(5) O(4) C(10) C(2) C(1) N(1) C(7) C(3) C(4) C(6) C(5) N(2) O(1) O(6) C(12) O(7) C(13)Mendeleev Communications Electronic Version, Issue 2. 1997 (pp. 47–86) INTAS and the Russian Foundation for Basic Research (grants nos. 94-2839 and 94-03-08730, respectively). References 1 R. G. Kostyanovsky, V. P. Leshchinskaya, R. K. Alekperov, G. K. Kadorkina, L. L. Shustova, Yu. I. El’natanov, G. L. Gromova, A. E. Aliev and I. I. Chervin, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 2566 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 2315) and references cited therein. 2 H. Bestian, Ann., 1950, 566, 210. 3 I. J. Cantlon, W. Cocker and T. B. H. McMurry, Tetrahedron, 1961, 15, 46. 4 Y. Hata and M. Watanabe, Tetrahedron Lett., 1972, 3827, 4659. Received: Moscow, 14th October 1996 Cambridge, 20th November 1996; Com. 6/07096E
机译:门捷列夫通讯电子版,第 2 期。1997 年(第 47-86 页) 氮丙啶二聚体与乙炔二羧酸盐的异常反应 Remir G. Kostyanovsky,*a Yurii I. El'natanov,a Ivan I. Chervin,a Mikhail Yu。Antipinb 和 Konstantin A. Lyssenkob a N. N. Semenov 化学物理研究所,俄罗斯科学院,117977莫斯科,俄罗斯联邦。传真: +7 095 938 2156 b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813 Moscow, Russian Federation.传真: +7 095 135 5085 1-(2-氨基乙基)氮丙啶(氮丙啶二聚体)1与乙炔二羧酸酯反应,得到1,4-二氮杂-5-氧代双环[4.3.0]壬烷(7-氮杂吲哚嗪)3和通常的烯胺加合物4;产物结构在光谱上得到证实,在3中也通过X射线衍射和呋喃5的独立合成.用乙炔二羧化物2a,b处理氮丙啶二聚体11和末端标记的二聚体1-15NH2†得到7,8,9-三(烷氧基羰基)-1,4-二氮杂-5-氧代双环[4.3.0]壬烷3a-c,以及通常的加合物(E)-和(Z)-4a-c(方案1)。3,4的结构被光谱证实‡(图1)。3a的结构也通过X射线衍射§(图2)和从呋喃53‡独立合成3b(方案2)得到证实。3a,b的形成也伴随着乙烯消除和15N标记随机化,这可以通过在400 MHz(1H)和100.61MHz(13C)记录†NMR谱图的转变来解释。氮丙啶基乙酰胺-15NH2(LiAlH4在沸腾THF中,12h)还原制得氮丙啶二聚体1-15N,收率12.3%,bp 127 °C;1H NMR (CDCl3):d 1.13 (m) 和 1.72 (m) (2×2H, CH2 环)、1.43 (br.s, 2H, HN)、2.26 (dt, 2H, a-CH2, 3JHH 5.8, 3JHN 2.1Hz) 和 2.85 (dt, 2H, b-CH2, 2JHN 0.9Hz);13CNMR (CDCl3):d 26.6(dd,CH2 环,1J 163.7 和 173.4 Hz)、41.79(ddt、b-CH2、1J 133.2、2J 2.8、1JCN 4.2 Hz)和 64.36(dt、a-CH2、1J 133.2、2JCN 1.4 Hz)。以氮丙啶乙酸乙酯2为原料,在MeOH–MeONa中与15NH3(15N的90%)在MeOH–MeONa中酰胺化,在20°C下制得氮丙啶乙酰胺-15NH2;收率 89.4%,熔点 88 °C;1HNMR(CDCl3):d 1.27(m)和1.84(m)(2×2H,CH2环),2.90(s,CH2CO)和6.72(2H,HAHB 15N,ABX光谱,Dn =200,2JAB 4.3,1JBX 89.5,1JBX 90.3Hz);13C {1H} NMR (CDCl3):d 27.4 (s, CH2 环)、63.4 (d, CH2CO, 2JCN 5.6 Hz) 和 173.0 (d, CO, 1JCN 15.3Hz)。所提出的机理的关键阶段由已知的易乙烯证实‡ 3a的光谱数据:在20°C,1h下从Et2O中的1和2a获得;产率 19.1%,mp188–189°C。 发现: C, 50.41;H,4.48;N,9.12。计算值 C13H14N2O7: C, 50.32;H,4.55;N,9.03%。1HNMR([2H8]甲苯):d 2.73(m,2H,3-CH2),3.62(m,2H,2-CH2),3.54(s),3,62(s)和3。71 (s) (3×3H, MeO) 和 7.30 (br.s, 1H, HN);13C NMR ([2H6]DMSO):d 38.52 (t, 3-CH2N, 1J 141.0 Hz), 43.65 (2-CH2, 1J 146.4 Hz), 51.56 (q), 52.05 (q) 和 52.36 (q) (3MeO, 1J 147.7Hz), 118.3 (s), 119.2 (s) (7- 和 8-C), 122.64 (s, 9-C) 和 125.58 (dt, 6-C, 3JCNCH 2.7, 3JCCNH 5.6Hz), 156.81 (q, 5-C, 2J = 3J = 4.2 Hz), 159.32 (q)、162.88 (q) 和 163.29 (q) (CO2Me, 3J 4.2Hz);MS (EI, 70 eV, 240 °C): m/z (%): 310 (34.3) [M+], 280 (15), 279 (100), 59 (13.2).对于3b:从1和2b在20°C,18 h的Et2O溶液中获得,收率为31%,或在140 °C的密封管中从6 in [2H8]甲苯定量获得,1h;mp140–141°C。 发现: C, 54.62;H, 5.68;N,8.10。计算值C16H20O7N2: C, 54.54;H,5.72;N 7.95%。1H NMR ([2H8]甲苯):d 1.08 (t)、1.13 (t) 和 1.21 (t) (3×3H, Me, 3J 7Hz)、2.47 (br. m, 2H, 3-CH2)、3.53 (br.m, 2H, 2-CH2)、4.07 (q)、4.19 (q) 和 4.33 (q) (3×2H, 3CH2O) 和 7.41 (br. s, 1H, HN);13C 核磁共振 (CD3OD):d 14.32 (q, 2Me, 1J 126.2 Hz), 14.38 (Me, 1J 127.4Hz), 40.43 (tt, 3-CH2, 1J 142.9, 2J 2.8 Hz), 45.14 (tt, 2-CH2, 1J 147.0, 2J 2.8 Hz), 62.64 (tq, 2CH2O, 1J 148.4, 2J 4.2 Hz), 62.9 (tq, CH2O, 1J 148.2, 2J 4.2 Hz), 120.79 (s), 122.65 (s) 和 124.6 (s) (9-, 7-、8-C)、127.02(m、6-C、3J 2.8 Hz)、159.96(t、5-C、2J 4.2 Hz)、160.73(m)、165.11(m)和165.15(m)(CO2Et,3J 4.2 Hz)。对于3c:收率12.1%,熔点143–144°C(PriOH);1H NMR ([2H8]甲苯):1.09 (t)、1.14 (t) 和 1.23 (t) (3×3H, 3Me, 3J 7.0Hz)、2.45 (br.m, 2H, 3-CH2, 2JHN 1.8 Hz)、3.5 (br.m, 2H, 2-CH2, 3JHN 2.1Hz)、4.08 (q)、4.20 (q) 和 4.33 (q) (3×2H, 3CH2O) 和 6.65 (d, 1H, HN, 1JHN 91.6Hz);13C NMR (CD3OD): 14.31 (q, 2Me, 1J 126.2Hz), 14.42 (Me, 1J 127.4Hz), 40.43 (ttd, 3-CH2, 1J 142.9, 2JCH 2.8, 1JCN 8.4Hz), 45.14 (ttd, 2-CH2N, 1J 147.0, 2JCH 2.8, 1JCN 7.7Hz), 62.61 (tq), 62.62 (tq) 和 62.9 (tq) (3CH2O, 1J 148.2Hz), 120.8 (dd, 7-C, 2J = 3JCN =2.9Hz), 122.63 (d, 8-C, 2JCN 4.2 Hz), 124.58 (d, 9-C, 1JCN 14.6Hz), 126.96 (d, 6-C, 1JCN 4.5Hz), 159.93 (d, 5-C, 1JCN 16.7Hz), 160.73 (m), 165.08 (m) 和 165.14 (m) (CO2Et, 3J 4.2 Hz).对于4a:(Z:E,3:1),收率为36.3%。对于(Z)-4a:1H NMR(CDCl3):d 1.12(m)和1.75(m)(4H,2CH2环),2.34(t,2H,a-CH2,3J 6.0Hz),3.53(td,b-CH2,3JHCNH 6.0Hz),3.65(s)和3.81(s)(2×3H,2MeO),5.07(s,1H,HC=),8.31(br.s,1H,HN)。对于(E)-4a:1H NMR(CDCl3):d 1.15(m)和1.74(m)(4H,2CH2环),2.41(t,2H,a-CH2,3J 6.0Hz),3.13(td,2H,b-CH2,3JHCNH 6.0Hz),3.62(s)和3.86(s)(2×3H,2MeO),4.64(s,1H,HC=)和5.3(br.s,1H,HN)。对于4b,4c:(Z:E,1.2:1),收益率为27%。(Z)-4b:1H NMR (CDCl3):d 1.12 (m) 和 1.74 (m) (4H, 2CH2 环)、1.24 (t) 和 1.34 (t) (2×3H, 2Me, 3J 7.0 Hz)、2.34 (t, 2H, a-CH2, 3J 6.1 Hz)、3.53 (td, b-CH2, 3JHCNH 6.1Hz)、4.07 (q) 和 4.25 (q) (2×2H, 2CH2O)、5.05 (s, 1H, HC= )、8.30 (br.s, 1H, HN)。(Z)-4c:1H NMR (CDCl3):d 1.12 (m) 和 1.74 (m) (4H, 2CH2 环)、1.24 (t) 和 1.33 (t) (2×3H, 2Me, 3J 7.0 Hz)、2.34 (dt、2H、a-CH2、3JHH 6.1、3JHN 2.8 Hz)、3.53 (tdd、2H、b-CH2、2JHCN ca. 1、3JHCNH 6.1Hz)、4.08 (q) 和 4。24 (q)(2×2H, 2CH2O), 5.04 (d, 1H, HC=, 3JHN 4.0 Hz) 和 8.26 (dt, 1H, HN, 1JHN 90.4 Hz)。(E)-4b:1H NMR (CDCl3):d 1.16 (m) 和 1.74 (m) (4H, 2CH2 环)、1.23 (t) 和 1.33 (t) (2×3H, 2Me, 3J 7.0Hz)、2.41 (t, 2H, a-CH2, 3J 6.0 Hz)、3.13 (td, b-CH2, 3JHCNH 6.0 Hz)、4.10 (q) 和 4.30 (q) (2×2H, 2CH2O)、4.64 (s, 1H, HC= ) 和 5.09 (br.s,1H, HN)。(E)-4c:1H NMR (CDCl3):d 1.15 (m) 和 1.74 (m) (4H, 2CH2 环), 1.23 (t) 和 1.35 (t) (2×3H, 2Me, 3J 7.0Hz), N NH2 + E C C E N NH E E E O + + N NH E O + * * N NH E E H N NH E H E * * 1 2 3 4 5 6 7 8 9 1 2a,b 3a–c (E)-4a–c (Z)-4a–c a E = CO2R, *N = 14N, R = Me b e = CO2R, *N = 14N, R = Et c E = CO2R, *N = 15N, R=Et 方案 1 D O E E E E H2N NH2 NH N HB HC HF E E E E HE HO HA HD + 3b E=CO2Et 方案 2 1 2 3 4 5 6 7 5 6门捷列夫通信电子版, 问题 2.1997 年(第 47-86 页)从酰化氮丙啶4 [方案 3 中的第一个中间两性离子可以表示为卡苯腈基鎓 (CAI) 的中间形式],并通过在 3b 中乳酰胺化之前分离中间体 6 来消除(方案 2)。这项工作是在 2.41 (br.m, 2H, a-CH2, 3.12 (tdd, b-CH2, 2JHCNH 6.1 Hz)、4.10 (q) 和 4.29 (q) (2×2H, 2CH2O)、4.62 (d, 1H, HC=, 3JHN 1.5 Hz)、5.37 (dt, 1H, HN, 1JHN 93Hz) 的财政支持下完成的。呋喃5,在乙烯-1,2-二胺在甲苯(14天,20°C)的作用下得到中间体6.后者通过梯度色谱法(硅胶,庚烷-乙酸乙酯,0® 60%)分离,收率为24%,无色油。找到: C, 52.10;H,6.69;N,6.82。计算值C18H28N2O9: C, 51.92;H,6.78;N,6.76%。1H NMR (CDCl3):d 1.11 (t)、1.13 (t) 和 1.20 (t) (3×3H, 3Me, 3J 7.0 Hz)、2.29 (dt, 1H, HA, 2JAB –10.4, 3JAC 10.4, 3JAD 5.8Hz)、2.83 (dt、1H、HB、3JBC 5.8、3JBD 10.4 Hz) 和 3.02 (ddd、1H、HC、2JCD –11.6Hz)、3.08 (ddd、1H、HD)、3.43 (d、1H、HF、3J 12.5Hz)、4.32 (1H、HE)、 4.03 (m)、4.11 (m) 和 4.13 (m) (3×2H, 3CH2);13C NMR (CDCl3):d 13.62 (q)、13.71 (q) 和 13.81 (q) (3Me, 1J 127.9Hz)、45.36 (dd、7-C、1J 138.1 和 143.9Hz)、48.22 (dd、6-C、1J 138.1 和 143.9 Hz)、52.14 (dd、3-C、1J 133.7、2J 4.4 Hz)、54.48 (dd、4-C、1J 138.1、2J 5.8Hz)、89.81 (m) 和 89.87 (m) (2-C 和 4-C, 2J, 3J 4.4Hz), 168.14 (m) 和 169.54 (m) (CO, 2J 7.3, 3J 4.4 Hz), 171.36 (m) 和 172.1 (m) (C=O, 3J 4.4 Hz)。 3a的晶体数据: C13H14N2O7 (来自PriOH): 单斜晶系, 空间群 P21/n, 在 293K 时: a =10.222(12), b =7.903(8), c = 18.07(2) Å, b = 102.88°, V =1423(3)Å3, z =4, dcalc =1.448gcm–3,m = 1.19 cm–1,F(000)=648。使用西门子P3/PC衍射仪在293 K(MoKa辐射,石墨单色仪,q/2q扫描方法,2q2s(I)的反射强度。采用直接方法求解结构,并用各向异性-各向同性(H原子)近似中对F的最小二乘法进行细化,近似为R =0.065,vR = 0.062,GOF=1.69。所有计算均使用程序包SHELXTL PLUS(版本5)执行。键长、键角、原子坐标和热参数的完整列表已存放在剑桥晶体学数据中心 (CCDC)。见《作者须知》,Mendeleev Commun.,1997年,第1期。NH N H E E E * HN NH E E E * HN N H E E E * N E NH2 * N E E E E NH2 * –C2H4 –EtOH + – * N E E NH2 * N E E NH2 * N E E NH2 – + – + 3c 1-15N + 2× 2b *N = 15N 方案 3 CAI 图 1 (a) 3c 和 (b) 13C {1H} 3c的2-C和3-C碳原子的NMR谱图。 2-C15N 2-C14N 3-C15N 3-C14N 45.14 40.43 H15N H14N 6.8 d d (a) (b) 图2 3a的晶体结构.选择的键长 (Å) 和角度 (°):N1–C1 1.383(6)、C1–C2 1.385(6)、C2–C3 1.401(6)、C3–C4 1.402(6)、C4–N1 1.373(6)、C4–C5 1.477(6)、C5–N2 1.347(6)、N2–C6 1.459(7)、C6–C7 1.509(7)、C7–N1 1.476(5);C1N1C4 109.7(3),N1C1C2 106.7(4),C1C2C3 109.2(4),C2C3C4 106.5(4),C3C4N1 107.9(4),C4N1C7 122.5(4),N1C4C5 120.2(4),C4C5N2 114.6(4),C5N2C6 122.6(4),N2C6C7 111.6(4),C6C7N1 107.7(4),C1N1C7 127.8(4),C3C4C5 131.3(4)。C(11) C(9) O(3) C(8) O(2) O(5) O(4) C(10) C(2) C(1) N(1) C(7) C(3) C(4) C(6) C(5) N(2) O(1) O(6) C(12) O(7) C(13)门捷列夫通讯电子版,第2期。1997年(第47-86页)INTAS和俄罗斯基础研究基金会(分别授予第94-2839号和94-03-08730号)。参考文献 1 R. G. Kostyanovsky, V. P. Leshchinskaya, R. K. Alekperov, G. K. Kadorkina, L. L. Shustova, Yu.I. El'natanov、G. L. Gromova、AE Aliev 和 I. I. Chervin,Izv。阿卡德。Nauk SSSR, Ser. Khim., 1988, 2566 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 2315) 和其中引用的参考文献。2 H. Bestian, Ann., 1950, 566, 210.3 I. J. Cantlon, W. Cocker 和 T. B. H. McMurry, Tetrahedron, 1961, 15, 46.4 Y. Hata 和 M. Watanabe,Tetrahedron Lett.,1972 年,3827 年,4659 年。收稿日期: 莫斯科, 1996-10-14 剑桥, 1996-11-20;通讯 6/07096E

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号