首页> 外文期刊>Journal of geophysical research >Mirror instability .2. The mechanism of nonlinear saturation
【24h】

Mirror instability .2. The mechanism of nonlinear saturation

机译:Mirror instability .2. The mechanism of nonlinear saturation

获取原文
获取原文并翻译 | 示例
           

摘要

Mirror mode disturbances have been reported in many different space plasma environments. We suggest that these structures are fully evolved mirror mode waves that have achieved the condition for marginal stability against further growth. The limiting form is nonlinear, with field variations of the order of 50 of the average field. We argue that as an initially unstable plasma in a uniform field approaches stability, the particle distributions must separate into trapped acid untrapped components that respond differently to the changing field. Most of the trapped particles are excluded from the mirror region. Exclusion sufficient to create marginal stability in the vicinity of the magnetic mirrors can be achieved by relatively small field intensifications. The trapped part of the distribution cannot achieve marginal stability without cooling. We envisage the cooling process as a Fermi deceleration achieved as the magnetic wells become deep and the mirror points move apart. Our analysis is both nonlinear and nonquantitative, but it provides an explanation for various aspects of the observations including the commonly reported feature that the mirror waves look like magnetic holes in the ambient field. We describe the pitch angle dependence of the plasma distribution that results from the processes discussed and note that the predicted distributions compare well with the forms observed in plasma data.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号