首页> 外文期刊>Journal of mechanical design >Design and Singularity Analysis of a 3-Translational-DOF In-Parallel Manipulator
【24h】

Design and Singularity Analysis of a 3-Translational-DOF In-Parallel Manipulator

机译:Design and Singularity Analysis of a 3-Translational-DOF In-Parallel Manipulator

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we shall present a novel design of a 3-translational-DOF in-parallel manipulator having 3 linear actuators. Three variable length legs constitute the actuators of this manipulator, whereas two other kinematic chains with passive joints are used to eliminate the three rotations of the platform with respect to the base. This design presents several advantages compared to other designs of similar 3-translational-dof parallel manipulators. First, the proposed design uses only revolute or spherical joints as passive joints and hence, it avoids problems that are inherent to the nature of prismatic joints when loaded in arbitrary way. Second, the actuators are chosen to be linear and to be located in the three legs since this design presents higher rigidity than other. In the second part of this paper, we addressed the problem of kinematic analysis of the proposed in-parallel manipulator. A mixed geometric and vector formulation is used to show that two solutions exist for the forward kinematic analysis. The problem of singularities is also investigated using the same method. In this work, we investigated the singularities of the active legs and the two types of singularity were identified: architectural singularities and configurational singularities. The singularity of the passive chains, used to restrict the motion of the platform to only three translations, is also investigated. In the last part of this paper, we built a 3D solid model of the platform and the amplitude of rotation due to the deformation of the different links under some realistic load was determined. This allowed us to estimate the "orientation error" of the platform due to external moments. Moreover, this analysis allowed us to compare the proposed design (over constrained) with a modified one (not over constrained). This comparison confirmed the conclusion that the over constraint design has a better rigidity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号