首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Synthesis, dissolution, and regeneration of silver nanoparticles stabilized by tannic acid in aqueous solution
【24h】

Synthesis, dissolution, and regeneration of silver nanoparticles stabilized by tannic acid in aqueous solution

机译:Synthesis, dissolution, and regeneration of silver nanoparticles stabilized by tannic acid in aqueous solution

获取原文
获取原文并翻译 | 示例
       

摘要

Silver nanoparticles (AgNPs), especially with small size, are easy to release silver ion in aqueous solution owing to various reasons, which would significantly affect the stability, properties, and application of AgNPs. In this paper, monodisperse AgNPs with small size of ca. 10nm were successfully prepared based on solid-state reactions. Ascorbic acid (AA) was used as reductant and tannic acid (TA) was used both as reductant and stabilizer in this environmentally friendly reaction. The dissolution and regeneration of the as-prepared TA-AgNPs in pure water were investigated by UV-vis spectra, TEM observations, and differential pulse anodic stripping voltammetry. The results indicated that the TA-AgNPs showed a little higher dissolution than conventional PVP-coated ones with similar size. However, the dissolved silver ion in the TA-AgNPs aqueous solution could be recovered just by adjusting the pH of the solution, which could be attributed to the reductant performance of TA at alkaline conditions. After regeneration, some smaller nanoparticles appeared in TA-AgNPs aqueous solution, indicating that new nucleation formed and the dissolved silver ions were actually recovered to Ag-0.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号