首页> 外文期刊>Applied and Environmental Microbiology >Structural and Mechanistic Insights into the Improvement of the Halotolerance of a Marine Microbial Esterase by Increasing Intra- and Interdomain Hydrophobic Interactions
【24h】

Structural and Mechanistic Insights into the Improvement of the Halotolerance of a Marine Microbial Esterase by Increasing Intra- and Interdomain Hydrophobic Interactions

机译:通过增加域内和域间疏水相互作用来改善海洋微生物酯酶的卤素耐受性的结构和机理见解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Halotolerant enzymes are beneficial for industrial processes requiring high salt concentrations and low water activity. Most halophilic proteins are evolved to have reduced hydrophobic interactions on the surface and in the hydrophobic cores for their haloadaptation. However, in this study, we improved the halotolerance of a thermolabile esterase, E40, by increasing intraprotein hydrophobic interactions. E40 was quite unstable in buffers containing more than 0.3 M NaCl, and its k(cat) and substrate affinity were both significantly reduced in 0.5 M NaCl. By introducing hydrophobic residues in loop 1 of the CAP domain and/or alpha 7 of the catalytic domain in E40, we obtained several mutants with improved halotolerance, and the M3 S202W I203F mutant was the most halotolerant. ("M3" represents a mutation in loop 1 of the CAP domain in which residues R22-K23-T24 of E40 are replaced by residues Y22-K23-H24-L25-S26 of Est2.) Then we solved the crystal structures of the S202W I203F and M3 S202W I203F mutants to reveal the structural basis for their improved halotolerance. Structural analysis revealed that the introduction of hydrophobic residues W202 and F203 in alpha 7 significantly improved E40 halotolerance by strengthening intradomain hydrophobic interactions of F203 with W202 and other residues in the catalytic domain. By further introducing hydrophobic residues in loop 1, the M3 S202W I203F mutant became more rigid and halotolerant due to the formation of additional interdomain hydrophobic interactions between the introduced Y22 in loop 1 and W204 in alpha 7. These results indicate that increasing intraprotein hydrophobic interactions is also a way to improve the halotolerance of enzymes with industrial potential under high-salt conditions.
机译:耐盐酶适用于需要高盐浓度和低水活度的工业过程。大多数嗜盐蛋白被进化为在表面和疏水核心中具有减少的疏水相互作用,以实现其卤化。然而,在这项研究中,我们通过增加蛋白内疏水相互作用来改善耐热性酯酶 E40 的卤素耐受性。E40在含有0.3 M NaCl以上的缓冲液中相当不稳定,其k(cat)和底物亲和力在0.5 M NaCl中均显著降低。通过在 E40 中 CAP 结构域的环 1 和/或催化结构域的 α 7 中引入疏水残基,我们获得了几种具有改善卤素耐受性的突变体,其中 M3 S202W I203F 突变体的耐盐性最高。(“M3”代表 CAP 结构域环路 1 中的突变,其中 E40 的残基 R22-K23-T24 被 Est2 的残基 Y22-K23-H24-L25-S26 取代。然后,我们求解了S202W I203F和M3 S202W I203F突变体的晶体结构,揭示了其提高卤代性的结构基础。结构分析表明,在α 7中引入疏水残基W202和F203,通过加强F203与W202及其他催化域内残基的域内疏水相互作用,显著提高了E40的卤性。通过在环路 1 中进一步引入疏水残基,由于环路 1 中引入的 Y22 和 α 7 中的 W204 之间形成了额外的域间疏水相互作用,M3 S202W I203F 突变体变得更加刚性和耐卤性。这些结果表明,增加蛋白内疏水相互作用也是提高高盐条件下具有工业潜力的酶的卤代性的一种方式。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号