...
首页> 外文期刊>High Temperature Materials and Processes >Decarburization and Inclusion Removal Process in Single Snorkel Vacuum Degasser
【24h】

Decarburization and Inclusion Removal Process in Single Snorkel Vacuum Degasser

机译:Decarburization and Inclusion Removal Process in Single Snorkel Vacuum Degasser

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the current work, the coupled mathematical models for decarburization, fluid flow model and inclusion collision-aggregation model were solved to investigate the spatial distribution of carbon, inclusion's collision-aggregation and removal in a single snorkel vacuum refining furnace (SSF). The numerical results show that the turbulence kinetic energy of ladle in SSF is much greater than that in RH, which can shrink the dead zone and prompt the mixing in the ladle. The overall decarburization reaction rate can be described as a first-order reaction. On the condition of the same gas flow rate, the volumetric mass transfer coefficient for decarburization in SSF is almost twenty times bigger than that in RH, which leads to a much greater decarburization rate in SSF. The spatial distribution of carbon mass fraction in SSF is quite different from that in RH. There is the greater mass fraction of carbon at the recirculation zone under up-snorkel in RH, but this phenomenon disappears in SSF. The inclusion removal can be simplified as the mass transfer between liquid steel to slag, refractory wall and bubble surface. And the overall inclusion removal rate can be regarded as a first-order reaction. The volumetric mass transfer coefficient for inclusion removal in SSF is about three times as that in RH, the inclusion removal rate in SSF is greater than that in RH. The inclusions with different size have different removal rates in SSF. For inclusion flotation after deoxidization, the treatment time in SSF is less than that in RH.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号