首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Rearrangement and radical mediated decarboxylation of trimethylsilyl benzoates using xenon difluoride
【24h】

Rearrangement and radical mediated decarboxylation of trimethylsilyl benzoates using xenon difluoride

机译:使用二氟化氙对苯甲酸三甲基硅烷基苯甲酸酯进行重排和自由基介导的脱羧反应

获取原文
获取外文期刊封面目录资料

摘要

Rearrangement and radical mediated decarboxylation of trimethylsilyl benzoates using xenon difluoride Pakawan Nongkunsarn and Christopher A. Ramsden * Department of Chemistry, Keele University, Keele, Staffordshire ST5 5BG, UK Treatment of trimethylsilyl benzoates 1 with xenon difluoride in CH2C12 or C6F6 results in a novel ester rearrangement and formation of aryl fluoroformates 2: rearrangement is not observed in MeCN solution in which the main products are arenes formed via the corresponding aryl radical. The reactions of Xe'" and I'll2 reagents are attracting increasing interest in organic synthesis but the mechanisms by which these hypervalent reagents react remain ill-defined. We have previously described the clean formation of arylfluorides by treatment of aryltrimethylsilanes with xenon difluoride eqn.(l)." Attractive features of ArSiMe, + XeF, +ArF + Xe(,) + FSiMe,(,, (1) this approach are the generation of by-products that are volatile and inert and the absence of HF in the reaction mixture. Alkanoic acids are known to react with XeF, to form alkylfluorides in good yield. 1,5,6 Aromatic carboxylic acids, however, do not appear to undergo a similar fluoro- decarboxylation but there is limited information available on their mode of reaction with XeF,: benzoic acid has been reported to give benzoyl fluoride (20) but no other products were identified.6 We now report an investigation of trimethylsilyl benzoates 1 which was initiated in order to explore potentially useful uncatalysed (HF) fluorodecarboxyl- ations having the stoichiometry shown in eqn.(2). We have ArCO,SiMe, + XeF, -ArF + Xe(g)+ FSiMe,,,, + CO,,,, (2) found that the course of reaction is solvent-dependent and the influence of the solvent provides further information on the mode of reaction of XeF, with organic substrates. In CH,CI, and C6F, solutions the major product is an aryl fluoroformate eqn. (3) and, as far as we are aware, this is the first example of ArCO,SiMe, + XeF, -FC0,Ar + Xe(,, + FSiMe,(g, (3) an ester rearrangement of the general type (R'C0,R2-+ R3C0,R'). In a typical reaction, trimethylsilyl 4-tert-butylbenzoate la was stirred with two equiv. of XeF, in CH,Cl, at room temp. 'H NMR monitoring showed quantitative formation of fluorotrimethylsilane (6, 0.20, d, J 7.3 Hz) together with formation of 4-tert-butylphenyl fluoroformate 2a (51; dkI 1.33, s).GC-MS analysis of the reaction mixture confirmed the structures of the major (2a) and minor products (Table 1). The fluoroformate 2a was isolated (26) by distillation under reduced pressure and found to be identical with an authentic sample (bp 103-104 "Cat 17 mmHg) prepared by reaction of 4-tert-butylphenyl I -chloroethyl carbonate with potassium fluoride.' Furthermore, treatment of the crude reaction mixture with sodium methoxide in methanol gave 4-tert- butylphenyl methyl carbonate (38) as a pale yellow oil, which Ar-CO,SiMe, F-C0,Ar Ar-COF 1 2 3 a Ar = p-Bu'C,H, b Ar = p-MeC,H, C Ar = rn-CIC6H4 d Ar = p-MeOC6H4 e Ar = p-CF,C6H4 ArCO2' + XeF -0-Ar solvent derived products 2 Scheme 1 was identical with an authentic sample prepared from methyl chloroformate and 4-tert-butylphenol.The constitution of the product 2a, which requires a migration of the aryl group from C to 0,is therefore firmly established. Similar rearrangements were observed using the trimethylsilyl esters 1b-e and the results are summarised in Table 1. By comparing yields determined by both NMR and GC-MS analysis we have found quantitative GC to be a reliable measure of the composition of the reaction mixtures. With the exception of the rn-chloro derivative lc, formation of the corresponding aroylfluoride 3 also occurs in low yield. Inspection of Table 1 reveals that the products 2 and 3 are always accompanied by varying yields of products formed by reaction of the solvent with either an aryl radical (Ar') or an aroyloxyl radical (ArCO,').Only low yields of arylfluorides were recorded. We have investigated a variety of solvents including C6F, and MeCN (Table 1) but an ideal solvent that does not participate in the reactions has not been found. When, for comparison, methyl 4-methylbenzoate (p-MeC,H,CO,Me) was allowed to react with XeF, in under identical conditions only methyl 3-fluoro-4-methylbenzoate (50) was formed: the remainder of the starting material was unchanged. Rearrangement products were detected when aromatic carboxylic acids (ArC0,H) were used but the reaction mixtures were much more complex, possibly due to the presence of HF.The pathways shown in Scheme 1 account for the observed products. One-electron oxidation of the ester 1 by XeF, leads to the radical cation 4 and the radical anion 5. The latter can be expected to rapidly dissociate to F-and FXe' or F' + Xe. Fluorodesilylation of the radical cation 4 leads directly to an aryloxyl radical (ArCO,'). The ion-pair (4 + 5) may collapse with loss of Me,SiF to form the fluoroxenon ester 6, which may alternatively be formed by combination of an aroyloxyl radical and FXe' (Scheme 1). Fluoride substitution of the alkyl group of a fluoroxenon ester (RC0,XeF -RF) has been implicated in J. Chem. Soc., Perkin Trans. 1 121 Table 1 Fluorodesilylation of trimethylsilyl benzoates 1using xenon difluoride Product distribution () determined by GC-MS a,b ArX ArC0,Y Entry Substrate Solvent' 2 3 H F c1 C6F7 CsF5 H Ar C6F7 cH2cl 1 la CH,CI, 50.5d 9.9 4.7 4.6 14.7 2.6 -4.9 2 Ib CH,Cl, 28.1 4.4 16.6 8.3 24.4 7.8 -3.0 3 Ic CH,CI, 28.0 0 27.3 0 8.5 25.2 -2.6 4 Id CH,Cl, 68.3 8.9 0 4.4 0 0 -0 5 le CH,Cl, 0 0 0 0 > 90 0 -0 6 la C6F6 37.5 24.5 -0 -0 0 -7 lb C6F6 37.1 8.8 -0 -0 0 -8 lc C6F6 37.3 0 -0 -'0 3.8 -9 Id C6F6 51.8 12.9 -0 -0 2.3 --10 le C6F6 2.0 2.0 -0 0 0 0 11 la MeCN 0 4.5 78.5 0 0 0 --12 lb MeCN 0 0 55.0 2.9 0 0.9 --13 Id MeCN 0 11.5 38.4 0 0 50.4 --14 le MeCN 0 2.5 83.5 0 0 0 --Mixtures were analysed using a Hewlett-Packard 5890 GC directly coupled to a 5970B MSD controlled by a Hewlett-Packard Series 300 computer with an HP59970c Chemstation.Unless indicated the remaining products were formed in low yield and were of no special significance. Reactions were carried out using ca. 0.15 mol dm-j solutions of substrate under an N, atmosphere and at room temperature. 51 by 'H NMR monitoring of the reaction mixture. Products were mainly of the type (Ar-C6F6), and (ArCo,-C6F,),. the fluorodecarboxylation of alkanoic acids.' In the case of the proposed aryl analogue 6 migration of the aryl substituent (6-2) is a plausible alternative mode of reaction. A tetrahedral intermediate ArCF(OTMS)OXeF, analogous to the Criegee intermediate in Baeyer-Villiger oxidations, can also be envisaged. When MeCN is used as solvent the absence of rearrangement products 2 and the high yields of arenes ArH (Table 1) are significant.The arenes must result from decarboxylation of the aroyloxyl radicals and subsequent reaction of the resulting aryl radical with the solvent. Under these conditions we assume that a similar rapid reaction of the radical anion 5 or FXe' with solvent precludes formation of the intermediate 6 (Scheme 1). In MeCN aroyl fluorides 3 continue to be formed suggesting that these products are produced via a different, non-radical pathway. We have recently reported a new rearrangement of amidines using diacetoxyiodo(benzene). * The closely related rearrange- ment reported here (1 --+2) using XeF, is a further example of the ability of hypervalent reagents to, induce umpolung behaviour, in this case the transformation of the oxygen atom of an ester carbonyl group into an electron-deficient centre.In this context it is interesting to note recently described analogous rearrangements of aldehydes and ketones using XeF,. Experimental The products described were obtained using the following typical procedures. Qtert-Butylphenyl fluoroformate 2a (a)From trimethylsilyl4-tert-butylbenzoate la. In a glove box (dry N, atmosphere) xenon difluoride (0.25 g, 1.48 mmol) was added to a solution of trimethylsilyl 4-tert-butylbenzoate (0.19g, 0.74 mmol) in CH,Cl, (5 cm3) at room temperature. The mixture was stirred for 3 h, after which the major product (51 by NMR) was isolated by evaporation and distillation of the residue under reduced pressure to yield compound 2a (0.31 g, 26), which was shown to be identical with an authentic sample prepared from 4-tert-butylphenyl 1 -chloroethyl carbonate.(b) From 4-tert-butylphenyl l-chloroethyl carbonate. A mixture of 4-tert-butylphenyl 1-chloroethyl carbonate (6.49 g, 25 mmol), potassium fluoride (4.40 g, 75 mmol) and 18-crown-6 122 J. Chem. Soc., Perkin Trans. I (0.34 g, 5 mol) was stirred for 2 h at 80 "C and at a pressure of 17 mmHg. Then the mixture was distilled under reduced pressure (liquid N,-cooled receiver flask) to give a co!ourless liquid identified as 4-tert-butylphenyl fluoroformate 2a (2.0 g, 40), bp 103-104 "C (17 mmHg). A sample was further purified by short path distillation (50°C at 0.5 mmHg) (Found: M', 196.0895.C,,H,,FO, requires M, 196.0900); v,,,(neat)/cm-' 2964, 1836 and 1236; G,(CDCl,) 1.32 9 H, s, C(CH3), 1.32 9 H, s, C(CH,),, 7.17 (2 H, dd, J 8.8 and 1.0, ArH) and 7.44 (2 H, d, J8.8 Hz, ArH);G,(CDCl,) 31.27, 34.57, 119.36, 126.74, 143.90 (d, J 286 Hz), 148.24 and 150.29; G,(CDCl,) -15.90; m/z 196 (M'), 181 (loo), 165, 153, 115,91 and 47. Acknowledgements We thank the Thai Government for the award of a scholarship to P. N. References 1 M. A. Tius, Tetrahedron,1995,51,6605. 2 A. Varvoglis, The Organic Chemistry of Polycoordinated Iodine, VCH, New York, 1992. 3 C. A. Ramsden, Chem. Soc. Rev., 1994,23, 11 1. 4 A. P. Lothian and C. A. Ramsden, Synlett, 1993,753. 5 T. B. Patrick, S. Khazaeli, S. Nadji, K. Hering-Smith and D. Reif, J. Org. Chem., 1993, 58, 705; T. B. Patrick, K. K. Johri and D. H. White, J. Org. Chem., 1983,48,4158;V. K. Brel, V. I. Uvarov, N. S. Zefirov, P. J. Stang and R. Caple, J. Org. Chem.,1993,58,6922. 6 T. B. Patrick, K. K. Johri, D. H. White, W. S. Bertrand, R. Mokhtar, M. R. Kilbourn and M. J. Welch, Can. J. Chem., 1986,64, 138. 7 V. A. Dang, R. A. Olofson, P. R. Wolf, M. D. Piteau and J.-P. G. Senet, J. Org. Chem., 1990,55, 1847. 8 C. A. Ramsden and H. L. Rose, J. Chem. SOC., Perkin Trans. I, 1995, 615. 9 S. Stavber, Z. Koren and M. Zupan, Synlett., 1994,265;B. Zajc and M. Zupan, J. Org. Chem., 1990,55, 1099. 10 B. Fechtig, H. Peter, H. Bickel and E. Vischer, Helu. Chim. Acta, 1968,51, 1108. Paper 5/06096F Received 15th September 1995 Accepted 19th October 1995
机译:使用二氟化氙对苯甲酸三甲基硅酯进行重排和自由基介导的脱羧反应 Pakawan Nongkunsarn 和 Christopher A. Ramsden * 基尔大学化学系,基尔,斯塔福德郡 ST5 5BG,英国 在 CH2C12 或 C6F6 中用二氟化氙处理苯甲酸三甲基硅酯 1 导致一种新的酯重排并形成芳基氟甲酸酯 2:在 MeCN 溶液中未观察到重排,其中主要产物是通过相应的芳烃形成的芳基自由基。Xe'“ 和 I'll2 试剂的反应引起了人们对有机合成越来越多的兴趣,但这些高价试剂的反应机制仍然不明确。我们之前已经描述了用二氟化氙处理芳基三甲基硅烷的芳基氟化物的清洁形成[方程(l)]。ArSiMe, + XeF, +ArF + Xe(,) + FSiMe,(,, (1) 这种方法的吸引人的特点是产生挥发性和惰性的副产物,并且反应混合物中没有 HF。已知链酸与XeF反应,形成高产率的烷基氟化物。然而,1,5,6芳香族羧酸似乎没有经历类似的氟脱羧反应,但关于它们与XeF反应方式的信息有限:据报道苯甲酸可产生苯甲酰氟(20%),但没有鉴定出其他产物。6 我们现在报告了对苯甲酸三甲基硅酯 1 的研究,该研究是为了探索潜在有用的未催化 (HF) 氟脱羧基化反应,其化学计量方法如方程 (2) 所示。我们有ArCO,SiMe,+ XeF,-ArF + Xe(g)+ FSiMe,,,, + CO,,,, (2)发现反应过程是溶剂依赖性的,溶剂的影响提供了关于XeF与有机底物反应模式的进一步信息。在CH,CI和C6F溶液中,主要产物是芳基氟甲酸酯[方程(3)],据我们所知,这是ArCO,SiMe,+ XeF,-FC0,Ar + Xe(,,+ FSiMe,(g,(3)一般类型的酯重排(R'C0,R2-+ R3C0,R')的第一个例子。在典型的反应中,在室温下,将4-叔丁基苯甲酸三甲基硅酯la与CH,Cl中的两个当量的XeF搅拌。 'H NMR监测显示定量形成氟三甲基硅烷(6,0.20,d,J 7.3 Hz)以及4-叔丁基苯基氟甲酸酯2a(51%;dkI 1.33,s)。反应混合物的GC-MS分析证实了主要产物(2a)和次要产物的结构(表1)。通过减压蒸馏分离出氟甲酸酯2a(26%),发现与4-叔丁基苯基I-氯乙基碳酸酯与氟化钾反应制备的真实样品(bp 103-104“Cat 17 mmHg)相同。' 此外,用甲醇钠处理粗反应混合物,得到 4-叔丁基苯基甲基碳酸甲酯 (38%) 为淡黄色油,其 Ar-CO,SiMe,F-C0,Ar Ar-COF 1 2 3 a Ar = p-Bu'C,H, b Ar = p-MeC,H, C Ar = RN-CIC6H4 d Ar = p-MeOC6H4 e Ar = p-CF,C6H4 ArCO2' + XeF -0-Ar 溶剂衍生产品 2 方案 1 与由氯甲酸甲酯和 4-叔丁基苯酚制备的真实样品相同。因此,产物2a的构成需要芳基从C迁移到0,因此已经牢固确立。使用三甲基硅烷基酯1b-e观察到类似的重排,结果总结在表1中。通过比较NMR和GC-MS分析确定的产率,我们发现定量GC是衡量反应混合物成分的可靠方法。除 rn-氯衍生物 lc 外,相应的芳酰氟 3 的形成也发生在低产率下。对表1的检查表明,产物2和产物3总是伴随着溶剂与芳基自由基(Ar')或芳酰氧基自由基(ArCO,')反应形成的产物的不同产率。仅记录了芳基氟化物的低产率。我们已经研究了各种溶剂,包括 C6F 和 MeCN(表 1),但尚未找到不参与反应的理想溶剂。为了进行比较,当允许4-甲基苯甲酸甲酯(p-MeC,H,CO,Me)与XeF反应时,在相同条件下仅形成3-氟-4-甲基苯甲酸甲酯(50%):起始材料的其余部分保持不变。当使用芳香族羧酸(ArC0,H)时,检测到重排产物,但反应混合物要复杂得多,可能是由于HF的存在。方案 1 中所示的途径说明了观察到的产物。酯 1 被 XeF 单电子氧化,产生自由基阳离子 4 和自由基阴离子 5。可以预期后者会迅速解离为 F 和 FXe' 或 F' + Xe。自由基阳离子 4 的氟去硅基化直接导致芳氧基自由基 (ArCO,')。离子对 (4 + 5) 可能随着 Me,SiF 的损失而坍塌,形成氟氙酯 6,氟氙酯也可以通过芳酰氧基自由基和 FXe' 的组合形成(方案 1)。氟氙酯(RC0,XeF-RF)烷基的氟化物取代已涉及J. Chem. Soc., Perkin Trans. 1 121 表1 使用二氟化氙气对苯甲酸三甲基硅酯1的氟去硅烷基化 GC-MS测定的产物分布(%) a,b ArX ArC0,Y入口底物溶剂' 2 3 H F c1 C6F7 CsF5 H Ar C6F7 cH2cl 1 la CH,CI, 50.5d 9.9 4.7 4.6 14.7 2.6 -4.9 2 Ib CH,Cl, 28.1 4.4 16.6 8.3 24.4 7.8 -3.0 3 Ic CH,CI, 28.0 0 27.3 0 8.5 25.2 -2.6 4 Id CH,Cl, 68.3 8.9 0 4.4 0 0 -0 5 le CH,Cl, 0 0 0 0 > 90 0 -0 6 la C6F6 37.5 24.5 -0 -0 0 -7 lb C6F6 37.1 8.8 -0 -0 0 -8 lc C6F6 37.3 0 -0 -'0 3.8 -9 Id C6F6 51.8 12.9 -0 -0 2.3 --10 le C6F6 2.0 2.0 -0 0 0 0 11 la MeCN 0 4.5 78.5 0 0 0 --12 lb MeCN 0 0 55.0 2.9 0 0.9 --13 Id MeCN 0 11.5 38.4 0 0 50.4 --14 le MeCN 0 2.5 83.5 0 0 0 --使用Hewlett-Packard 5890 GC直接耦合分析混合物到由惠普 300 系列计算机和 HP59970c Chemstation 控制的 5970B MSD。除非另有说明,否则其余产品以低产量形成,没有特殊意义。使用约0.15 mol dm-j底物溶液在N,气氛和室温下进行反应。51%通过'H NMR监测反应混合物。产品主要有(Ar-C6F6)和(ArCo,-C6F,),型。链烷酸的氟脱羧反应。在所提出的芳基类似物6的情况下,芳基取代基(6-2)的迁移是一种合理的替代反应方式。还可以设想四面体中间体 [ArCF(OTMS)OXeF],类似于 Baeyer-Villiger 氧化中的 Criegee 中间体。当使用MeCN作为溶剂时,重排产物2的缺失和芳烃ArH的高产率(表1)是显着的。芳烃必须由芳酰氧基自由基的脱羧反应以及随后产生的芳基自由基与溶剂的反应产生。在这些条件下,我们假设自由基阴离子5或FXe'与溶剂的类似快速反应排除了中间体6的形成(方案1)。在 MeCN 中,芳酰氟 3 继续形成,表明这些产物是通过不同的非自由基途径产生的。我们最近报道了使用二乙酰氧基碘(苯)对脒进行的新重排。* 这里报道的密切相关的重排(1 --+2)使用XeF,是高价试剂诱导umpolung行为能力的又一个例子,在这种情况下,将酯羰基的氧原子转化为缺电子中心。在这种情况下,有趣的是注意到最近描述的使用 XeF 的醛和酮的类似重排。实验 所描述的产品是使用以下典型程序获得的。氟甲酸二叔丁基苯酯 2a (a)来自三甲基硅基 4-叔丁基苯甲酸酯 la.在手套箱(干燥N,气氛)中,在室温下将二氟化氙(0.25g,1.48mmol)加入到4-叔丁基苯甲酸三甲基硅烷(0.19g,0.74mmol)的CH,Cl,(5cm3)溶液中。将混合物搅拌3小时,然后通过减压蒸发和蒸馏残留物分离主要产物(NMR为51%),以得到化合物2a(0.31g,26%),其结果显示与由4-叔丁基苯基1-氯乙基碳酸酯制备的真实样品相同。(b) 来自4-叔丁基苯基-L-氯乙基碳酸酯。4-叔丁基苯基1-氯乙基碳酸酯(6.49g,25mmol),氟化钾(4.40g,75mmol)和18-冠醚-6 122 J.Chem.Soc.的混合物。,Perkin Trans. I(0.34g,5mol%)在80“C和17mmHg压力下搅拌2小时。然后将混合物在减压下蒸馏(液体N,-冷却的接收瓶),得到无共的液体,鉴定为4-叔丁基苯基氟甲酸酯2a(2.0g,40%),bp 103-104“C(17mmHg)。通过短程蒸馏(50°C,0.5 mmHg)进一步纯化样品(Found: M', 196.0895.C,,H,,FO, requires M, 196.0900);v,,,(neat)/cm-' 2964、1836 和 1236;G,(CDCl,) 1.32 [9 H, s, C(CH3)], 1.32 [9 H, s, C(CH,),], 7.17 (2 H, dd, J 8.8 and 1.0, ArH) and 7.44 (2 H, d, J8.8 Hz, ArH);G,(CDCl,) 31.27, 34.57, 119.36, 126.74, 143.90 (d, J 286 Hz), 148.24 和 150.29;G,(CDCl,) -15.90;m/z 196 (M')、181 (loo)、165、153、115、91 和 47。致谢 我们感谢泰国政府向 P. N. 颁发奖学金 参考文献 1 M. A. Tius, Tetrahedron,1995,51,6605.2 A. Varvoglis,《多配位碘的有机化学》,VCH,纽约,1992年。3 C. A. Ramsden, Chem. Soc. Rev., 1994,23, 11 1.4 A.P.洛锡安和C.A.拉姆斯登,Synlett,1993,753。5 T. B. Patrick, S. Khazaeli, S. Nadji, K. Hering-Smith and D. Reif, J. Org. Chem., 1993, 58, 705;T. B. Patrick, K. K. Johri and D. H. White, J. Org. Chem., 1983,48,4158;V. K. Brel, V. I. Uvarov, N. S. Zefirov, P. J. Stang and R. Caple, J. Org. Chem.,1993,58,6922.6 T. B. Patrick, K. K. Johri, D. H. White, W. S. Bertrand, R. Mokhtar, M. R. Kilbourn and M. J. Welch, Can. J. Chem., 1986,64, 138.7 V. A. Dang, R. A. Olofson, P. R.沃尔夫,MD Piteau 和 J.-P.G. Senet, J. Org. Chem., 1990,55, 1847.8 C. A. Ramsden 和 H. L. Rose, J. Chem. SOC., Perkin Trans.我,1995 年,615。9 S. Stavber, Z. Koren and M. Zupan, Synlett., 1994,265;B. Zajc and M. Zupan, J. Org. Chem., 1990,55, 1099.10 B. Fechtig, H. Peter, H. Bickel 和 E. Vischer, Helu.噗噗。学报, 1968,51, 1108.论文 5/06096F 收稿日期 1995 年 9 月 15 日 录用日期 1995 年 10 月 19 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号