首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Thermochemical and Structural Stability of A- and B-Site-Substituted Perovskites in Hydrogen-Containing Atmosphere
【24h】

Thermochemical and Structural Stability of A- and B-Site-Substituted Perovskites in Hydrogen-Containing Atmosphere

机译:A位点和B位取代的钙钛矿在含氢气氛中的热化学和结构稳定性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The thermochemical and structural stability of complex perovskites A_(1-x)A'_xB_(1-y-z)B'_yB"_zO_(3±δ) (A, A' = La, Sr and B, B', B" = Ni, Mn, Fe, Co) was explored in H2—Ar atmosphere (5 H2—95 Ar) in a wide temperature range by thermogravimetric analysis, differential thermal analysis, XRD, and HRTEM. All perovskites showed good thermochemical stability in a temperature range of 25—300 °C. Reduction of the perovskites occurs at temperatures higher than 300 °C and can be interpreted as a multistep process. At the initial stage of exposure to H2-Ar, a small weight gain was observed. This might indicate direct sorption of hydrogen into the lattice, forming hydride—oxide phases. On the other hand, the oxide lattice could reduce to form water, and then, the evolved water is reincorporated into the lattice to give a small weight gain. This is followed by dramatic weight loss. Water was found to be the main gaseous product formed during reduction. Complex perovskites, depending upon composition, rapidly lose up to 6—12 mol of the lattice oxygen, which is accompanied by phase or structural transformations in the solid. Further mechanism and kinetics of reduction strongly depend on temperature. The rate of reduction at intermediate temperatures (500—700 °C) becomes slow, probably due to a local stabilization of La(OH)3 in extremely humidified hydrogen-containing atmosphere. The complete reduction of perovskites can occur at 800 °C. On long-term annealing, the perovskite containing three transition elements and Sr on the B and A sublattices, respectively, showed better thermochemical stability in hydrogen-containing atmosphere. The results suggest that the presence of structural defects and their mobility in the oxygen sublattice are important factors determining the thermochemical stability of perovskites.
机译:采用热重分析、差热分析、XRD和HRTEM等手段,在宽温度范围内的H2—Ar气氛(5% H2—95% Ar)中探究了复合钙钛矿A_(1-x)A'_xB_(1-y-z)B'_yB“_zO_(3±δ)(A, A' = La, Sr和B, B', B” = Ni, Mn, Fe, Co)的热化学和结构稳定性.所有钙钛矿在25—300 °C的温度范围内均表现出良好的热化学稳定性。 钙钛矿的还原发生在高于300°C的温度下,可以解释为一个多步骤过程。在暴露于H2-Ar的初始阶段,观察到体重略有增加。这可能表明氢直接吸附到晶格中,形成氢化物氧化物相。另一方面,氧化物晶格可以还原形成水,然后,释放的水被重新掺入晶格中以产生小的重量增加。随后是体重急剧减轻。水被发现是还原过程中形成的主要气态产物。复杂的钙钛矿,根据成分的不同,会迅速失去高达6-12摩尔%的晶格氧,并伴有固体中的相变或结构转变。还原的进一步机理和动力学很大程度上取决于温度。在中间温度(500—700°C)下,还原速率变得缓慢,这可能是由于La(OH)3在极度潮湿的含氢气氛中局部稳定。钙钛矿的完全还原可以在800°C时发生。在长期退火时,B和A亚晶格上分别含有3个过渡元素和Sr的钙钛矿在含氢气氛中表现出更好的热化学稳定性。结果表明,结构缺陷的存在及其在氧亚晶格中的迁移率是决定钙钛矿热化学稳定性的重要因素。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号