...
首页> 外文期刊>journal of applied polymer science >A new approach for the estimation of kinetic parameters in emulsion polymerization systems. I. Homopolymerization under zero–one conditions
【24h】

A new approach for the estimation of kinetic parameters in emulsion polymerization systems. I. Homopolymerization under zero–one conditions

机译:A new approach for the estimation of kinetic parameters in emulsion polymerization systems. I. Homopolymerization under zero–one conditions

获取原文

摘要

AbstractA new method for the estimation of kinetic parameters in emulsion polymerization systems is presented. This method is based on studies of the evolution of monomer conversion in chemically initiated seeded emulsion polymerization systems. In this paper, homopolymerization under zero—one conditions is considered. The method is based on a fundamental model that includes the free radical balance in the aqueous phase and fundamental parameters such as the entry and exit rate coefficients, the termination rate constant in the aqueous phase, and the rate coefficient for initiator decomposition. These parameters, as well as the propagation rate constant, are the estimable parameters. This method, which uses all available data simultaneously in order to estimate the parameters, is checked by using simulated experimental data generated with exact values of the parameters. The criteria for deciding the usefulness of the present approach are the closeness of the fit to the original data and the match of the estimated kinetic parameters to the exact values of the parameters. It was found that accurate values of the parameters are obtained with the present approach provided that a sufficient number of experiments with a minimum range of variation are available. A study of both the minimum number of experiments and the minimum range of variation of the experimental conditions needed to estimate reliable parameters is presented. Also, the effect of both random and systematic errors is included in this study. Finally, a comparison between the present approach and those previously published in the literature is presente

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号