...
首页> 外文期刊>Finite elements in analysis & design >A high-performance multiscale space-time approach to high cycle fatigue simulation based on hybrid CPU/GPU computing
【24h】

A high-performance multiscale space-time approach to high cycle fatigue simulation based on hybrid CPU/GPU computing

机译:A high-performance multiscale space-time approach to high cycle fatigue simulation based on hybrid CPU/GPU computing

获取原文
获取原文并翻译 | 示例
           

摘要

A multiscale space/time computational framework for high cycle fatigue (HCF) life predictions is established by integrating the extended space-time finite element method (XTFEM) with a multiscale progressive damage model. While the robustness of the multiscale space/time method has been previously demonstrated, the associated high computational cost remains a critical barrier for practical applications. In this work, a novel hybrid iterative/direct linear system solver is first proposed with a unique preconditioner. Computational efficiency is further improved by taking advantage of the high-performance computing platform featuring hierarchy of the distributed- and the shared-memory parallelisms using CPUs and GPUs. Robustness of the accelerated framework is demonstrated through benchmark problems. It is shown that the serial version of the hybrid solver is at least 1-2 orders of magnitude faster in computing time and cheaper in memory consumption than the conventional sparse direct or iterative solver, while the parallel version efficiently handles XTFEM stiffness matrix equations with over 100 million unknowns using 64 CPU cores. Optimal speedups are achieved in the parallel implementations of the multiscale progressive damage model using either CPUs or GPUs. HCF simulations on 3D specimens are performed to quantify key effects due to mean stress and multiaxial load conditions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号