首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >On the scope of acylnitrilium ion initiated heteroannulations: monocyclizations terminated by unactivated alkenes
【24h】

On the scope of acylnitrilium ion initiated heteroannulations: monocyclizations terminated by unactivated alkenes

机译:关于酰基氮离子引发的异环化范围:由未活化的烯烃终止的单环化

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1995 On the scope of acylnitrilium ion initiated heteroannulations: monocyclizations terminated by unactivated alkenes David J. Hughes and Tom Livinghouse*'t Department of Chemistry and Biochemistry, Montanu State Uniuersity, Bozemun, MT 5971 7, USA Intramolecular trapping of transient acylnitrilium ions by di- and tri-substituted alkenes has been shown to occur with reasonable efficiency to provide the corresponding 2,3,4,5-tetrahydropyridineand 3,4-dihydro- 2H-pyrrole derivatives in moderate overall yield. Annulations initiated by heteroatom-stabilized carbocations have played a prominent role in the synthesis of numerous carbocyclic and heterocyclic natural products. The vast majority of cyclizations in this category involve alkene participants that give rise to metastable carbocations which are subsequently trapped by a waiting nucleophile or rapidly transmutated via facile molecular reorganization.Efficient cyclizations that proceed under mild conditions via relatively long-lived carbocations are comparatively few in number. Our interest in the prospective use of an acylnitrilium ion 'initiated alkene-cascade cyclization for the synthesis of the A ristotelia alkaloid ( +)-makonine (1) (Scheme 1) prompted our examination of prototypical cyclizations between these cations and simple, unactivated alkenes. Herein we report the results of this study. The isocyanides employed throughout this investigation were prepared from the corresponding amines by sequential N-formylation/dehydration.Accordingly, formylation of the amine 4 (EtOCHO, reflux, 5 h) followed by dehydration (POCI,-Et,N, THF, 0 "C) furnished the isocyanide 5 in 82 yield after distillation. Cyclization studies The initial conversion of compound 5 into the corresponding a-keto imidoyl chloride 6 was achieved by treatment with trimethylacetyl chloride (TMAC) (1.05 equiv.) as described previously.7b Whereas ionization of 6 could be readily achieved by exposure to AgBF, (1.10 equiv.) in accord with literature precedent CH,Cl,-(CH,Cl),, -70 OC,' subsequent cycliz- ation of the resulting acylnitrilium ion 7 took an unexpected course. When the reaction mixture was warmed to -2OoC, cyclization of 7 proceeded by way of the tertiary carbonium ion 8 to provide 9$ and 10a (9/10a = 2) in 64 isolated yield.The formation of 9 could be completely suppressed by the use of AgO,SCF, for generation of the initial acylnitrilium cation. Accordingly, treatment of 6 with AgO,SCF, (1.10 equiv., CH,CI,, -70 "C-, -40 "C)provided the isomeric hexahydro- isoquinolines IOa and 10b 10a/10b = 1 (NMR) in 61 overall yield from the isocyanide 5. Exposure of this mixture to silica gel resulted in quantitative conversion of 10b into 10a which could be isolated in analytically pure form in 61 yield.$ As expected. the regiochemistry of the foregoing cyclizations (fused us. spiro) would appear to be governed by the relative stabilities of the respective post-cyclization carbocations.A similar outcome was observed in the acylative cyclization of f Fellou of the Alexander von Humboldt Foundation, 1993 1995. 8 The bicyclic fluoride 9 was determined to be stereochemically homogeneous by "C NMR and GC-mass spectral analysis. 5 All new compounds were fully characterized by IR, 'H and I3C NMR spectroscopy and possessed satisfactory combustion analyses or an exact mass measurement. L 1 2 a 3 Scheme 1 3-cyclohexylidenepropyl isocyanide 11.ISequential reaction of 11 with TMAC (1.05 equiv.) followed by ionitation/cyclization of the resulting a-keto imidoyl chloride AgO,SCF, (1.10 equiv.), CH,Cl,, -70 "C-, -40 "C provided the 3,4-dihydro- 2H-pyrrole 125 to the exclusion of the corresponding spiro- cycle 13 in 54 yield after chromatography. Not surprisingly, conformational restriction of the 3-cyclohex- 1-enyl substituent precluded facile isomerization of the nonconjugated alkene within 12 (vide supra).As a prelude to the intended synthesis of (+)-makonine 1, we next turned our attention to the construction of bridged bicyclic ring systems via acylnitrilium ion-alkene cyclizations. Reaction of 4-isocyanomethyl-2,4-dimethylcyclohex-1-ene 14 11 with TMAC (1.05 equiv.) followed by Ag' mediated cyclization AgO,SCF, (1.10 equiv.), CH,CI,, -70 "C+ -40 "C secured the azabicyclo3.3.lnonanes 15a and 15b 15a/15b = 1.5 (NMR) in 51 yield after chromatography.** Presumably 15a and b arise as a consequence of divergent proton elimination from a common carbocationic intermediate.In contrast to this result, acylation/cyclization of the 1,2-disubstituted alkene- containing isocyanide 16 (vide supra) furnished the bicyclic alcohol 17 as the only major product after an aqueous quench albeit in low (33) isolated yield.tt In this instance, a series The isonitrile 11 was prepared by the reaction of (2-chloro-ethy1idene)cyclohexane with isocyanomethyllithium. (1 The isocyanide 14 was prepared by the conversion of 1.4-dimethyl- cyclohex-3-ene-1 -arbaldehyde to the corresponding amine i, H,N-OTHP; ii, LiAlH, (74 overall) followed by N-formylation-dehydration.** AzabicycloC3.3. llnonane 15a was isolated from this mixture by careful chromatography on silica gel and was fully characterized (see footnote $).tt The stereochemical disposition of the hydroxy group of 17 has not been determined. 2374 J. CHEM. SOC. PERKIN TRANS. I 1995 c1' i, EtOCHO ii. POC13. Eta v 5 6I""'"(-70 "C) 8 7 9 1Oa 10b (T= BF,-: 9/10a= 2.64) (2-=CF3SO3-: 10d10b= 1.61) +-/-EC: i, Bu'COCl cb ii, Ag03CF3 13 11 12 of DEPT and 'H--I3C HETCOR experiments was used to establish unambiguously the connectivity of the core hetero- cycle and rule out the isomeric r3.2.21 ring system. The regio- selectivity of cyclization in the case of 17 is likely a reflection of preferential 6-membered ring formation. The preceding examples clearly show that even isolated, unactivated alkenes can serve as suitable terminators for cyclizations involving acylnitrilium ions.Although cyclization efficiencies are somewhat lower than in previous examples, ' these results indicate that isolated alkenes in various settings might serve as effective cationic relay moieties for cascade type annulations. Experimental ~Cyclohex-l-enyl-5-trimethylacetyl-3,4-dihydro-2H-pyrrole 12 A 50-cm3 round bottom flask fitted with a magnetic stirrer bar, flame-dried and cooled under a stream of argon, was charged with (3-isocyanopropyl)cyclohexane(1 49 mg, I .O mmol). The system was again flushed with argon, sealed with a septum and an argon balloon was attached to it. Dichloromethane (1.5 cm3) was added via a syringe to the flask followed by trimethylacetyl chloride (127 mg, 1.05 mmol) also added via a syringe.The mixture was stirred under argon at room temperature. (A previously performed NMR tube reaction dictated how long this reaction takes.) When the acylative insertion was complete, the reaction mixture was diluted with dichloromethane (15 cm3) and the flask was cooled to ca. -70 "C in a Pr'OH-CO, bath (NB: -78 "C is too cold!). Silver trifluoromethanesulfonate (283 mg, 1.1 mmol) was added to the reaction mixture as a solid all at once after which the system was sealed and stirred in the range -60 to -70 "C under argon for 1 h (after 10 min a pale precipitate was seen in the flask). The reaction mixture was 14 15a 15b (15d15b= 1.5; 51) HO' 16 17 (33) Reagents:i, Bu'COCl; ii, AgO3m3; iii, H20 then allowed to warm slowly to -35 "C over 30 min and was maintained at that temperature overnight (16 h).Water (10 cm3) was added to the reaction mixture which was then allowed to warm to room temperature with stirring over over 10 min. The mixture was filtered through a pad of wet Celite with dichloromethane (20 cm3) and the filtrate was transferred to a separatory funnel with further dichloromethane (10 cm3). The biphasic mixture was shaken, separated and the aqueous layer was extracted with dichloromethane (2 x 10 em3). The combined organic phases were dried (MgSO,), filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel (ca. 10 x 1.5 cm) by gradient elution with mixtures of ether and hexane (50 cm3 each of 5, 10, 20, 50 and 100 polar solvent in non-polar as necessary) to provide the title compound 12 as a colourless oil (1 26 mg, 54); G,(CDCl,) 5.38-5.33 (m, 1 H, C=CH), 4.0H.00 (m, 2 H, CH,N), 3.71 (m, 1 H, CH), 2.13-1.99 (m, 3 H), 1.81- 1.65 (m, 2 H), 1.63-1.45 (m, 4 H) and 1.25 s, 9 H, C(CH,),; Gc(CDC13) 205.9, 174.2, 136.5, 123.3, 61.9, 56.4, 44.1, 28.7, 26.9, 26.8, 25.2, 22.8 and 22.2; v,,,,,(thin film)/cm-' 3042, 2929, 2860,2837,1684, 1617, 1481 and 1458; m/z 233 (M+),218, 177, 148 and 57 (100)Found (HRMS): M', 233.1769.Calc. for C1,H2,NO:M+, 233.17801. Acknowledgements Generous support for this research by a grant from the National Institutes of Health is gratefully acknowledged. References 1 W. S. Johnson, V.R. Fletcher, B. Chenera, W. R. Barlett, F. S. Tham and R. K. Kullnig, J. Am. Chem. Soc., 1993,115,497. 2 W. J. Klaver, H. Heimstra and W. N. Speckamp, J. Am. Chem. Soc., 1989,111,2588. 3 S. D. Knight, L. E. Overman and G. Pairaudeau, J. Am. Chem. Soc., 1993,115,9293. 4 S. R. Harring, E. D. Edstrom and T. Livinghouse, in Advances in Heterocyclic Natural Product Syntheses, vol. 2, ed. W. H. Pearson, JAl Press, Tnc., Greenwich, CT, 1992, pp. 299-376. 5 M.H. Hopkins, L. E. Overman and G. M. Rishton, J. Am. Chem. SOC.,1991, 113, 5354. 6 For example see: A. A. Schegolev, W. A. Smit, G. V. Roitburd and V. F. Kucherov, Tetrahedron Lett., 1974, 3373; R. R. Sobti and S. Dev, Tetrahedron Lett., 1967,2893. 7 (a) C. H. Lee, M. Westling, T. Livinghouse and A. C. Williams, J. Am. Chem. Soc., 1992,114,4089; (b)G. Luedtke, M. Westling and T. Livinghouse, Tetrahedron, 1992,48,2209, and references therein. 8 I. R. C. Bick and M. A. Hai, Heterocycles, 1981, 16, 1301. 9 J. E. Baldwin and M. L. Lusch, J. Org. Chem., 1979,44, 1923. Paper 5/04402B Received 6th July 1995 Accepted 8th August I995
机译:J. CHEM. SOC. PERKIN 译.I 1995 关于酰基硝基离子引发的异环化作用的范围:由未活化的烯烃终止的单环化 David J. Hughes 和 Tom Livinghouse*'t 蒙塔努州立大学化学与生物化学系,博泽蒙,MT 5971 7,美国 二取代和三取代烯烃对瞬时酰基硝基离子的分子内捕获已被证明以合理的效率发生,以提供相应的 2,3,4,5-四氢吡啶和 3,4-二氢-2H-吡咯衍生物总产量。由杂原子稳定的碳阳离子引发的环化在许多碳环和杂环天然产物的合成中发挥了重要作用。这一类中的绝大多数环化涉及烯烃参与者,这些参与者产生亚稳态碳正离子,随后被等待的亲核试剂捕获或通过简单的分子重组迅速转化。在温和条件下通过相对长寿命的碳正离子进行的有效环化数量相对较少。我们对将酰基硝基离子引发的烯烃-级联环化用于合成 A ristotelia 生物碱 (+)-makonine (1) (方案 1) 的兴趣促使我们研究了这些阳离子和简单、未活化的烯烃之间的原型环化。在此,我们报告了这项研究的结果。在整个研究过程中使用的异氰化物是通过连续的N-甲酰化/脱水从相应的胺中制备的。因此,胺4的甲酰化(EtOCHO,回流,5小时)然后脱水(POCI,-Et,N,THF,0“C)在蒸馏后以82%的收率提供异氰化物5。如前所述,化合物 5 最初转化为相应的 a-酮基酰氯 6 是通过用三甲基乙酰氯 (TMAC)(1.05 当量)处理实现的.7b 而 6 的电离可以很容易地通过暴露于 AgBF(1.10 当量)来实现,符合文献先例 [CH,Cl,-(CH,Cl),, -70 OC],随后对所得酰基硝离子 7 的环化采取了意想不到的过程。当反应混合物升温至-2OoC时,7通过叔碳离子8进行环化反应,以64%的分离收率提供9$和10a(9/10a = 2)。使用AgO,SCF可以完全抑制9的形成,从而生成初始酰基硝基阳离子。因此,用AgO,SCF(1.10当量,CH,CI,, -70“C-, -40”C)处理6,提供异构体六氢异喹啉IOa和10b [10a/10b = 1(NMR)],总收率为异氰化物5的61%。将该混合物暴露于硅胶中导致 10b 定量转化为 10a,10a 可以以 61% 的收率以分析纯形式分离。上述环化的区域化学(融合了我们。spiro)似乎受各自环化后碳正离子的相对稳定性的支配。在亚历山大·冯·洪堡基金会(Alexander von Humboldt Foundation)的f Fellou的酰化环化中观察到了类似的结果,1993年,1995年。8 通过“C NMR 和 GC-质谱分析”确定双环氟化物 9 具有立体化学均一性。5 所有新化合物均通过IR、'H和I3C NMR波谱进行了充分表征,并具有令人满意的燃烧分析或精确的质量数测量。L 1 2 a 3 方案 1 3-环己亚基丙基异氰胝 11.11 与 TMAC(1.05 当量)的连续反应,然后电离/环化所得的 a-酮酰亚胺酰氯 [AgO,SCF,(1.10 equiv.),CH,Cl,, -70 “C-, -40 ”C] 提供 3,4-二氢-2H-吡咯 125,以排除相应的螺旋循环 13,经色谱分析后以 54% 的收率。毫不奇怪,3-环己-1-烯基取代基的构象限制排除了非共轭烯烃在12内的简单异构化(同上)。作为预期合成 (+)-makonine 1 的前奏,我们接下来将注意力转向通过酰基硝基离子-烯烃环化构建桥接双环系统。4-异氰甲基-2,4-二甲基环己-1-烯 14 11 与 TMAC(1.05 当量)反应,然后进行 Ag' 介导的环化反应 [AgO,SCF, (1.10 equiv.), CH,CI,, -70 “C+ -40 ”C] 在色谱分析后以 51% 的收率确保了氮杂双环[3.3.l]壬烷 15a 和 15b [15a/15b = 1.5 (NMR)]。** 据推测,15a 和 b 是由于从普通碳阳离子中间体中分离出不同的质子而产生的。与此结果相反,含1,2-二取代烯烃的异氰化物16的酰基化/环化反应使双环醇17成为水性淬火后的唯一主要产物,尽管分离 yield.tt 含量低(33%) 在这种情况下,一系列异腈 11 由(2-氯乙基1亚基)环己烷与异氰甲基锂反应制备。(1 异氰化物14是通过将1.4-二甲基-环己-3-烯-1-arbaldehyde转化为相应的胺[i,H,N-OTHP;ii,LiAlH,(总74%)],然后进行N-甲酰化脱水来制备的。 氮杂双环C3.3。 llnonane 15a通过硅胶上的仔细色谱法从该混合物中分离出来,并进行了充分的表征(见脚注$)。 2374 J. CHEM. SOC. PERKIN TRANS.I 1995 c1' i, EtOCHO ii.POC13的。Eta v 5 6I“”'“(-70 ”C) 8 7 9 1Oa 10b (T= BF,-: 9/10a= 2.64%) (2-=CF3SO3-: 10d10b= 1.61%) +-/-EC: i, Bu'COCl cb ii, Ag03CF3 13 11 12 的 DEPT 和 'H--I3C HETCOR 实验用于明确建立核心杂循环的连通性,排除了异构体 r3.2.21 环系。在17的情况下,环化的区域选择性可能反映了优先的6元环的形成。前面的例子清楚地表明,即使是分离的、未活化的烯烃也可以作为涉及酰基硝根离子的环化反应的合适终止剂。尽管环化效率略低于以前的实例,但这些结果表明,在各种环境中分离的烯烃可以作为级联型环化的有效阳离子中继部分。实验 ~环己-l-烯基-5-三甲基乙酰基-3,4-二氢-2H-吡咯 12 装有磁力搅拌棒的 50 cm3 圆底烧瓶,火焰干燥并在氩气流下冷却,装入 (3-异氰基丙基)环己烷(1 49 mg,I .O mmol)。再次用氩气冲洗系统,用隔膜密封,并在其上连接一个氩气球。通过注射器将二氯甲烷(1.5cm3)加入烧瓶中,然后通过注射器加入三甲基乙酰氯(127mg,1.05mmol)。将混合物在室温下在氩气下搅拌。(先前进行的核磁共振管反应决定了该反应需要多长时间。当酰化插入完成时,将反应混合物用二氯甲烷(15 cm3)稀释,并将烧瓶冷却至约-70“C,在Pr'OH-CO浴中(注意:-78”C太冷!将三氟甲磺酸银(283mg,1.1mmol)作为固体一次性加入到反应混合物中,然后密封系统并在-60至-70“C范围内在氩气下搅拌1小时(10分钟后在烧瓶中观察到淡沉淀)。反应混合物为14 15a 15b(15d15b=1.5;51%)HO' 16 17(33%)试剂:i,Bu'COCl;ii: AgO3m3;iii,然后让H20在30分钟内缓慢升温至-35“C,并在该温度下维持过夜(16小时)。向反应混合物中加入水(10cm3),然后搅拌10分钟以上,使其升温至室温。将混合物通过含有二氯甲烷(20 cm3)的湿铁矿垫过滤,并将滤液转移到分离漏斗中[用进一步的二氯甲烷(10 cm3)]。摇动双相混合物,分离水层,用二氯甲烷(2 x 10 em3)萃取水层。将合并的有机相干燥(MgSO),过滤,减压蒸发。粗产物在硅胶(约10 x 1.5 cm)上通过快速色谱法纯化,方法是用乙醚和己烷的混合物(5、10、20、50和100%极性溶剂各50 cm3,视需要)进行梯度洗脱,以提供标题化合物12为无色油(1 26 mg,54%);G,(CDCl,) 5.38-5.33 (m, 1 h, C=CH), 4.0H.00 (m, 2 H, CH,N), 3.71 (m, 1 H, CH), 2.13-1.99 (m, 3 H), 1.81- 1.65 (m, 2 H), 1.63-1.45 (m, 4 H) 和 1.25 [s, 9 H, C(CH,),];GC(CDC13)205.9、174.2、136.5、123.3、61.9、56.4、44.1、28.7、26.9、26.8、25.2、22.8和22.2;v,,,,,(薄膜)/cm-' 3042、2929、2860、2837、1684、1617、1481 和 1458;m/z 233 (M+),218, 177, 148 和 57 (100%)[发现 (HRMS): M', 233.1769.Calc. for C1,H2,NO:M+, 233.17801.致谢 非常感谢美国国立卫生研究院对这项研究的慷慨支持。参考文献 1 W. S. Johnson, V.R. Fletcher, B. Chenera, W. R. Barlett, F. S. Tham and R. K. Kullnig, J. Am. Chem. Soc., 1993,115,497.2 W. J. Klaver, H. Heimstra 和 W. N. Speckamp, J. Am. Chem. Soc., 1989,111,2588.3 S. D. Knight, L. E. Overman 和 G. Pairaudeau, J. Am. Chem. Soc., 1993,115,9293.4 S. R. Harring、E. D. Edstrom 和 T. Livinghouse,《杂环天然产物合成进展》,第 2 卷,W. H. Pearson 编,JAl Press,Tnc.,康涅狄格州格林威治,1992 年,第 299-376 页。5 M.H. Hopkins, L. E. Overman 和 G. M. Rishton, J. Am. Chem. SOC.,1991, 113, 5354.6 例如,见:A. A. Schegolev, W. A. Smit, G. V. Roitburd and V. F. Kucherov, Tetrahedron Lett., 1974, 3373;R. R. Sobti 和 S. Dev,四面体 Lett.,1967,2893。7 (a) C. H. Lee, M. Westling, T. Livinghouse and A. C. Williams, J. Am. Chem. Soc., 1992,114,4089;(b)G. Luedtke, M. Westling and T. Livinghouse, Tetrahedron, 1992,48,2209, 以及其中的参考文献。8 I. R. C. Bick 和 M. A. Hai, Heterocycles, 1981, 16, 1301.9 J. E. Baldwin 和 M. L. Lusch, J. Org. Chem., 1979,44, 1923.论文 5/04402B 1995 年 7 月 6 日收稿 I995 年 8 月 8 日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号