...
首页> 外文期刊>Journal of Nematology, with Annual of Applied Nematology >Potential for Entomopathogenic Nematodes in Biological Control: A Meta-Analytical Synthesis and Insights from Trophic Cascade Theory
【24h】

Potential for Entomopathogenic Nematodes in Biological Control: A Meta-Analytical Synthesis and Insights from Trophic Cascade Theory

机译:Potential for Entomopathogenic Nematodes in Biological Control: A Meta-Analytical Synthesis and Insights from Trophic Cascade Theory

获取原文
获取原文并翻译 | 示例

摘要

Entomopathogenic nematodes (EPN) are ubiquitous and generalized consumers of insects in soil food webs, occuring widely in natural and agricultural ecosystems on six continents. Augmentative releases of EPN have been used to enhance biological control of pests in agroecosystems. Pest managers strive to achieve a trophic cascade whereby natural-enemy effects permeate down throguh the food web to suppress host herbivores and increase crop production. Although trophic cascades have been studied in diverse aboveground arthropod-based systems, they are infrequently investigated in soil systems. Moreover, no overall quantitative assessment of the effectiveness of EPN in suppressing hosts with cascading benefits to plants has been made. Toward synthesizing the available but limited information on EPN and their ability to suppress prey and affect plant, yield, we surveyed the litrerature and performed a meta-analysis of 35 published studies. Our analysis found that effect sizes for arthropod hosts as a result of EPN addition were consistently negative and indirect effects on plants were consistently positive. Results held across several different host metrics (abundance, fecundity and survival) and across measures of plant performance (biomass, growth, yield and survival). Moreover, the relationship between plant and host effect sizes was strikingly and significantly negative. That is, the positive impact on plant responses generally increased as the negative effect of EPN on hosts intensified, providing strong support for the mechanism of trophic cascades. We also review the ways in which EPN might interact antagonistically with each other and other predators and pathogens to adversely affect host suppression and dampen trophic cascades. We conclude that the food web implications of multiple-enemy interactions involving EPN are little studied, but, as management techniques that promote the long-term persistence of EPN are improved, antagonistic interactions are more likely to arise. We hope that the likely occurrence of antagonistic interactions in soil food webs should stimulate researchers to conduct field experiments explicitly designed to examine multiple-enemy interactions involving EPN and their cascading effects to hosts and plants.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号