首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis from thebaine of 10-oxothebaine, potentially a precursor for κ-selective opiates
【24h】

Synthesis from thebaine of 10-oxothebaine, potentially a precursor for κ-selective opiates

机译:从10-氧代茶碱合成10-氧代茶碱,可能是κ选择性阿片类药物的前体

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. soc. PERKIN TRANS. 1 1994 Synthesis from Thebaine of 10-Oxothebaine, Potentially a Precursor for K-Selective Opiates Calum F. Henderson, Gordon W. Kirby" and (in part) John Edmiston Department of Chemistry, University of Glasgow, Glasgow G12 800,UK Thebaine 3 has been converted in an improved yield (72). with tetranitromethane, oxygen and ammonia, into the 14P-nitro 8a,lO~-epidioxide 4, which reacted with base to give the known 14~-nitro-lO-oxo compound 7. Reduction of this nitro compound with tributyltin hydride gave the 8p-hydroxy-1 0-oxodihydrothebaine 8, which was dehydrated with phosphorus oxychloride to give 10-oxothebaine 9. As expected, this conjugated diene reacted with but-3-en-2-one to form a Diels-Alder cycloadduct 10, the 10-0x0 derivative of thevinone 11, the precursor of a well known series of opiate analgesics.Unexpectedly, the epidioxide 4 was found to isomerise cleanly on activated alumina to give the 8a,lOa-epoxy acetal 5, in which a peroxide oxygen has been inserted into the 7,8-bond of the bridged peroxide 4. Opiate analgesics act at several, well defined sub-populations of receptors in the central nervous system. For example, morphine 1acts predominantly at p receptors while ethylketocyclazocine 2 is a prototypical ligand for K receptors. Several clinically use- ful opiates have been synthesis4 from the opium alkaloid 10 1 2 thebaine 3 and, consequently, like morphine, they have C-10 methylene groups. 10-Oxothebaine 9 therefore is an attractive starting material for the synthesis of potentially K-selective opiates.Direct conversion of the 10-methylene group of several morphinan derivatives into a 10-keto group has been achieved with chromium(w) reagents, although yields are generally modest.' However, the methoxy diene system of thebaine 3 is attacked by powerful oxidants. We report here a 4-step synthesis of 10-oxothebaine 9 from thebaine 3 via the known epidioxide 4 and 10-0x0 derivative 7(Scheme 1). We reported2 that the thebaine 3 reacts in benzene with tetranitromethane and oxygen to give, unexpectedly, the bridged peroxide 4 as a major product. However, about half the thebaine is concurrently converted into its trinitromethane salt. For the present study, we increased the yield of the epidioxide 4 to ca.70 by conducting the nitration in benzene with slow passage of streams of oxygen and ammonia2C through the mixture. Treatment of the epidioxide with sodium hydroxide in ethanol, as before,2b gave the keto alcohol 7 in high yield. Removal of the 14P-nitro group was effected with an excess of tributyltin h~dride,~ with heating under reflux in toluene. The radical generator azoisobutyronitrile was added slowly to promote the reduction, which proceeded in cu. 70 yield. Finally, the codeine derivative 8 was dehydrated with phosphorus oxychloride in pyridine to afford 10-oxothebaine 9 (73). The structure 9 was readily discerned by comparison of the product's spectra with those of thebaine 3, and by the following transformation.Thevinone 11, the cycloadduct of thebaine and but-3-en-2- one, is the precursor of an important series of potent analgesic^.^ When 10-oxothebaine 9 was heated with an excess of the MeO' 3 6 Ii 4 7 I Iii iv Me0 MeO MeO' OH 5 8 IV Meo-NMe MeO' MeO' OMe 1o;x=o 9 11; X = H2 Scheme 1 Reagents and conditions: i, C(NO2),4,-NH, in PhH at 2OOC; ii, Al,O,; iii, NaOH in EtOH at 20OC; iv, Bu,SnH and MezC(CN)Nlz in PhMe at 11 1 "C; v, POCl3-C5H,N in PhMe at 11 1 "C;vi, MeCOCH=€H, in PhH at 80 OC Me0 H 12 butenone, the corresponding cycloadduct 10 was formed in 86 yield. Again, the structure and stereochemistry of 10- oxothevinone 10 was deduced from the close similarity, mutatis mutandis, of its 'H NMR spectrum with that of thevinone 11.A by-product of the cycloaddition was tentatively identified ('H NMR) as the 7p epimer of 10-oxothevinone 10. The epidioxide 4 was routinely purified2' by chromatog- raphy on neutral, grade I11 alumina, prior to recrystallisation. When grade I alumina was inadvertently employed, efficient conversion into the isomeric 'isodioxide' 5 took place. The structure 5 was deduced from the following chemical and spectroscopic properties. Unlike the epidioxide 4,2b the iso- dioxide 5 did not react with triphenylphosphine, or sodium iodide in acetic acid. Also, the mass spectrum showed an intense molecular ion peak, unlike the spectrum of the epidioxide. Clearly then, the isodioxide was not a peroxide.The IR and NMR spectra showed the absence of hydroxy and carbonyl groups and of any newly formed C=Cdouble bond. Therefore, the isodioxide 5 was hexacyclic, like its precursor 4. The 'H and I3C NMR spectra indicated the presence of a new, acetal, methine group 8-H, 6, 105.6 and 5.37 (s). Significantly, one other methine group 7-H, 6, 120.0 and 6, 5.73 (d, J 1.4 Hz) had also become attached to oxygen during the isomerisation. Clearly, rearrangement had occurred with cleavage of the peroxide link in the epidioxide 4, perhaps catalysed by alumina acting as a Lewis acid, and migration of an adjacent methine carbon, C-7 or C-9, on to oxygen. Accordingly, the alternative structures 5 and 6 were considered for the isodioxide.The former better accounted for the 'H and I3C chemical shifts and the vicinal coupling constant J9.104.4 Hz. Structure 5 was con- firmed when I3C-'H NMR correlations showed (see Experi- mental section) that the acetal carbon, 6 105.6, was C-8 rather than C-10 (6 76.6). Migration of C-7, rather than C-9, on to oxygen (0-8) in the epidioxide 4, concerted with peroxide cleavage, would be favoured by the anti arrangement of the 7,8- bond and the peroxide link, as shown in the diagram 12, based upon the published2" X-ray structure. Attack of the other oxygen (0-10) on the cation generated at C-8 would then form the 5-membered, acetal ring. A similar, 8a,lOa-epoxy link is present in the epoxide formed 2b by reduction of the epidioxide 4 with triphenylphosphine.Experimental General.-M.p.s. were determined on a Kofler, hot-stage microscope. IR spectra were recorded on either a Perkin-Elmer 580 or 953 spectrometer for chloroform solutions. 'H NMR spectra at 90 MHz were obtained with a Perkin-Elmer R34 spectrometer. I3C NMR spectra at 90.6 and 50.3 MHz, and 'H spectra at 360 and 200 MHz were obtained with Bruker spectrometers. The 'H spectrum at 100 MHz was obtained with a Varian XL 100 spectrometer. All NMR spectra were recorded for deuteriochloroform solutions. J Values are in Hz. Mass spectra were produced by EI at 70 eV with an AEI MS9 instrument. TLC employed Merck GF254 silica gel, the flow J. CHEM. SOC. PERKIN TRANS. 1 1994 was assisted by a water pump.' Woelm alumina was used for column chromatography.Organic solvents were dried, unless otherwise stated, over magnesium sulphate and evaporated with a Buchi Rotavapor. Improved Preparation of the Epidioxide 4.-Tetranitro- methane was prepared from fuming nitric acid and acetic anhydride.6 For best results, the fuming nitric acid was freshly redistilled from a mixture with one third of its volume of concentrated sulphuric acid. The tetranitromethane was steam distilled, washed successively with aq. sodium carbonate and water and then dried (Na2S04); 6J50.3 MHz; CDCl,-C,D, (4: l) 119.8 (nonet, JC,N9.4). The 'H spectrum likewise showed no signals from any significant impurities. Dry ammonia gas and dry oxygen were passed slowly through a solution of thebaine (18.73 g, 60.2 mmol) in benzene (500 cm3) at room temperature after which tetranitromethane (1 8.87 g, 96.3 mmol) in benzene (100 cm3) was added dropwise during 20 min with continuous passage of both gases. The passage of both gases was continued for a further 2 h during which time a red oil separated from the reaction mixture and collected in the bottom of the flask.The supernatant, benzene solution was decanted off the oil, which was then washed with benzene (2 x 150 cm3). CAUTlON: the red oil contains ammonium trinitromethide, which may decompose violently when heated. The combined benzene solutions were washed successively with aq. sodium carbonate and water and then were dried and evaporated. The residual oil was chromatographed on a column of either neutral grade 111 alumina or TLC grade silica to give the epidioxide 4 (16.76 g, 72), m.p.160 "C (from ethyl acetate) (lit.,2b 160- 161 "C). The Isodioxide 5.-The epidioxide (400 mg) 4 was adsorbed onto a column of neutral, grade I alumina (1 5 g) which after ca. 2 h was eluted with chloroform-hexane to give the isodioxide 5 (380 mg). Recrystallisation of the product 5 from ethanol gave material (295 mg, 74), m.p. 270-271 "C (Found: C, 59.0; H, 5.0; N, 7.1; M', 388.1276. C19H2*N20, requires C, 58.8; H, 5.2; N, 7.2; M, 388.1270); v,,,/cm-' 1549, 1450, 1225 and 1285; 6,(360 MHz) 6.86 and 6.75 (ABq, J 8.1, 1-and 2-H), 5.73 (d, J 1.4, 7-H), 5.37 (s, 8-H), 5.21 (d, J 1.4, 5-H), 5.12 (d, J4.4, 10-H), 4.47 (d, J4.4, 9-H), 3.88 (s, 3-OMe), 3.44 (s, 6-OMe), 2.54 (s, NMe), 2.53 (m, 16-H,), 2.39 (ddd, J 13.0, 10.3 and 6.9, 15,,-H) and 1.78 (dt, J 13.0 and 2.7, 15eq.-H); 6,(90.6 MHz) 154.8 (C-6), 146.1 (C-3), 145.1 (C-4), 130.3 (C-12), 125.9 (C-1 l), 120.0 (C-7), 119.3 (C-1), 113.9 (C-2), 105.6 (C-8), 95.5 (C-14), 92.7 (C-5), 76.6 (C-lo), 71.3 (C-9), 56.3 (OMe), 56.1 (OMe), 46.6 (C-l3), 45.8 (C-l6), 43.1 (NMe) and 31.3 (C-15).I3C-'H Correlations (50.3 and 200 MHz) showed, inter aka, that C-8 in structure 5 rather than C-10 in structure 6 was the acetal carbon (6, 105.6). Thus, the following 1-and 3-bond 13C-lH couplings allowed signals for 10-H, C-10, 8-H and C-8 to be successively identified: C-12 (8 130.3) coupled with 1-H (6.87), 15,,-H (2.38) and 10-H (5.12); C-10 (76.6) with 10-H and 8-H (5.37); and C-8 (105.6) with 8-H and 10-H. 8,14-Dihydro-8/3-hydroxy-14P-nitro- 1 0-oxothebaine 7.-The epidioxide 4 (600 mg) was suspended in ethanol (75 cm3) at room temperature and treated with aq.sodium hydroxide (4 mol dm-3; ca. 0.2 an3).The mixture was stirred for 18 h, by which time a clear solution had formed. Work-up2' gave the nitro ketone 7 (560 mg, 9379, m.p. 220°C (from methanol) (lit.,2b 219 "C) (Found: C, 58.8; H, 5.3; N, 7.1. Calc. for C19H20N20,: C, 58.8; H, 5.2; N, 7.2). The UV and 'H NMR spectra agreed well with those reported.2b 8,14-Dihydro-8/3-hydroxy-10-oxothebaine -The nitro ketone 7 (2.00 g, 5.15 mmol) and tributyltin hydride (9.00 g, 3 1 mmol) were heated under reflux in dry toluene (250 cm3) under J.CHEM. SOC. PERKIN TRANS. 1 1994 nitrogen and azoisobutyronitrile was added slowly in toluene to the mixture, the course of reaction being monitored by TLC. Addition was continued until reduction of the nitro compound was almost complete. The time (ca. 2 h) and the quantity of azo compound (a large excess) required depended upon the rate of addition. The mixture was heated for a further 2 h and then was evaporated to give an oily residue. The residue was shaken with acetonitrile (100 cm3) and hexane (100 cm3). The acetonitrile layer was washed with hexane (4 x 100 cm3) and then evaporated to give a yellow-green solid. Chromatography on a silica gel (TLC grade) column eluted with ethyl acetate gave successively the nitro compound 7 (0.27 g) and the hydroxy ketone 8 (1.28 g, 72), m.p. 158-160 "C (from methanol) for the first batch prepared; later batches had m.p. ca.260 "C (decomp.) with sintering from 235 "C (from ethanol) (Found: C, 66.3; H, 6.15; N, 4.0; M+, 343.1413. C,,H,,NO, requires C, 66.5; H, 6.2; N, 4.1; M, 343.1419); v,,,/cm-' 3600, 3400, 1672, 1620 and 1600; v,,,(KBr)/cm-l 3528, 1665, 1624 and 1605; 6,(200 MHz)7.38and6.80(ABq, J8.4, l-and2-H),4.95(d, J1.3,5-H), 4.82 (d, J 1.8, 7-H), 3.92 (s, 3-OMe), 3.78 (dt, J 9.3 and ca. 1.5, 8-H), ca. 3.56 (signal partly obscured, 9-H), 3.55 (s, 6-OMe), 2.72 (ddd, J 12.1, 5.0 and 1.8, 16eq.-H), 2.44 (s, NMe), 2.37 (td, partly obscured, J 12.1 and 4.5, 1 6ax.-H), 2.27 (dd, J 9.3 and 2.6, 14-H), 2.10 (td, J 12.3 and 5.0, 150x.-H), 1.95 (ddd, J 12.5, 4.3 and 1.8, 15eq,-H) and 1.72 (br s, OH, exch.with D,O); 6,(50.3 MHz) 34.8 (C-15), 42.3 (C-13), 43.5 (NMe), 47.3 (C-16), 51.5 (C-14), 54.9 (OMe), 56.3 (OMe), 65.9 (C-8 or -9), 66.0 (C-9 or -8), 87.5 (C-5), 104.7 (C-7), 113.5 (C-2), 118.7 (C-1), 125.2 (C-1 l), 136.7 (C-12), 143.8 (C-4), 150.2 (C-3), 151.6 (C-6) and 192.4 (C-10). 10-Oxothebaine 9.-The hydroxy ketone 8 (1.00 g), dry pyridine (4 cm3) and freshly distilled phosphorus oxychloride (1 cm3) were heated under reflux in dry toluene (1 50 cm3) under nitrogen for 3 h, by which time a black oil had separated out. The mixture was evaporated to low volume and the residue was treated with sufficient aq. sodium hydrogen carbonate to render the mixture distinctly alkaline.The toluene and aq. layers were separated and the aq. layer was extracted with toluene (4 x 40 cm3). The combined toluene solutions were washed with aq. sodium hydrogen carbonate, dried and evaporated. Pyridine was removed from the residue by repeated addition and evaporation of toluene. The resulting yellow- green solid was chromatographed on a column of silica gel (TLC grade). Elution with chloroform then chlorofom-methanol (10: 1) gave a green oil (0.77 g), which crystallised slowly. Recrystallisation from ethanol gave 10-oxothebaine 9 (0.69g, 7373, m.p. 195-198 "C(Found: C, 70.3; H, 5.8; N,4.3; M+ 325.1305. Cl9H1,NO4 requires C, 70.1; H, 5.9; N, 4.3; M, 325.13 14); v,,,/cm- ' 1680, 1666 and 1607; A,,,(MeOH)/nm 263 (E 12 900 dm3 mol-' cm-'), 285 (10 450) and 330 (8470); 6,(200 MHz) 7.35 and 6.76 (ABq, J 8.4, 1-and 2-H), 5.64 (d, J 6.5,8-H), 5.38 (s, 5-H), 5.09 (d, J 6.5,7-H), 3.92 (s, 3-OMe), 3.62 (s, 6-OMe and 9-H), 2.77 (ddd, J 12.6, 6.5 and 2, 16eq-H), 2.69 297 (td, J 12.4 and 3.5, 16ax-H), 2.52 (s, NMe), 2.28 (td, J 12 and 6.4, 15,,-H) and 1.87 (ddd, J 12.6, 3 and 2, 15eq-H); 6,(50.3 MHz) 36.8 (C-l5), 43.4 (NMe), 47.4 (C-16), 47.7 (C-l3), 55.1 (OMe), 56.3 (OMe), 70.5 (C-9), 88.5 (C-5), 96.4 (C-7), 1 12.3 (C-8), 113.0 (C-2), 119.7 (C-1) 125.4 (C-11), 130.7 (C-12), 138.7 (C-14), 143.9 (C-4), 149.6 (C-3), 152.4 (C-6) and 193.8 (C-10).10-Oxothevinone lO.-lO-Oxothebaine 9 (120 mg) and freshly distilled but-3-en-2-one (1.2 cm3) were heated under reflux with benzene (1.2 cm3) for 5 h.The solution was evaporated and the residue was chromatographed first in diethyl ether on a short column of silica gel (TLC grade) and then on silica plates developed with diethyl ether. The band having R,ca. 0.4 was extracted with ethyl acetate to give 7a-acetyl-6,7,8,14-tetra-hydro-1O-OXO-~~,14a-ethenothebaine (1 0-oxotheuinone) 10 (1 26 mg, 8679, m.p. 129 to 131 "C (from methanol) (Found: C, 69.8; H, 6.4; N, 3.5. C23H,,N0, requires C, 69.9; H, 6.3; N, 3.5); vmax/cm-' 1719 and 1675; 6,(200 MHz) 7.28 and 6.76 (ABq, J 8.4, 1- and 2-H), 5.98 (dd, J8.8 and 1.2, 18-H), 5.55 (d, J8.8, 17-H),4.68(d,J1.2,5-H),3.92(s,3-OMe),3.61(s,6-OMe),3.18 (s, 9-H), 2.48 (s, NMe), 2.16 (s, Ac) and 1.39 (m, 8a-H); m/z 395 (M'), 352 and 325.The product 10 before TLC showed weak 'H NMR signals at 6 6.13 (dd, J ca. 9 and 1, 18-H), 5.44 (d, J 8.8, 17-H) and 5.05 (d, J ca. 1, 5-H) possibly arising from the protons indicated in the corresponding 7p-acetyl derivative. Acknowledgements We thank the SERC and Reckitt and Colman Ltd (Hull) for financial support, Drs. C. P. Chapleo and J. W. Lewis (Reckitt and Colman) for their interest in this research and Drs I. H. Sadler (Edinburgh) and D. S. Rycroft (Glasgow) for NMR spectra. References 1 S. Archer, A. Seyed-Mozaffari, S. Ward, H. W. Kosterlitz, S. J. Paterson, A. T. McKnight and A. D. Corbett, J. Med. Chem., 1985, 28, 974, and references cited therein. See also A. B. McElroy, D. E. Bays, D. 1. C. Scopes, A. G. Hayes and M. J. Sheehan, J. Chem. Soc., Perkin Trans. I, 1990, 1563. 2 (a) R. M. Allen, C. J. Gilmore, G. W. Kirby and D. J. McDougall, J. Chem. Soc., Chem. Commun., 1980, 22; (b) R. M. Allen, G. W. Kirby and D. J. McDougall, J. Chem. Soc., Perkin Trans. I, 1981, 1143; (c) R. J. Kobylecki, I. G. Guest, J. W. Lewis and G. W. Kirby, DTOLS 2,812,580/1978 (Chem. Abstr., 1979,90, 87709t). 3 N. Ono, H. Miyake, R. Tamura and A. Kaji, Tetrahedron Lett., 1981, 1705. 4 K. W. Bentley and D. G. Hardy, J. Am. Chem. Soc., 1967,89,3267. 5 L. M. Harwood, Aldrichimica Acta, 1985, 18,25. 6 P. Liang, Organic Synth., Coll. Vol. 3, John Wiley, New York, 1955, p. 803. Paper 3/05418G Received 9th September 1993 Accepted 11th October 1993
机译:J. CHEM. soc. PERKIN TRANS. 1 1994 Synthesis from Thebaine of 10-Oxothebaine, Potentially a Precursor for K-Selective Opiates Calum F. Henderson, Gordon W. Kirby“ and (in part) John Edmiston Department of Chemistry, University of Glasgow, Glasgow G12 800,UK Thebaine 3 has been converted in an improved yield (72%).与四硝基甲烷、氧和氨水,通入14P-硝基8a,lO~-表二氧化物4,其与碱反应得到已知的14~-硝基lO-氧代化合物7。用三丁基氢化锡还原这种硝基化合物得到8p-羟基-1 0-氧代二氢θ苷8,用三氯氧磷脱水得到10-氧代噻吩9。正如预期的那样,这种共轭二烯与but-3-en-2-one反应形成Diels-Alder环加合物10,这是thevinone 11的10-0x0衍生物,是一系列著名的阿片类镇痛药的前体。出乎意料的是,发现表二氧化物 4 在活化氧化铝上干净地异构化,得到 8a,lOa-环氧缩醛 5,其中过氧化氧已插入桥接过氧化物 4 的 7,8-键中。阿片类镇痛药作用于中枢神经系统中几个定义明确的受体亚群。例如,吗啡 1 主要作用于 p 受体,而乙基酮环唑嗪 2 是 K 受体的原型配体。从鸦片生物碱 10 1 2 thebaine 3 合成了几种临床上有用的阿片类药物4,因此,与吗啡一样,它们具有 C-10 亚甲基。因此,10-氧代噻吩 9 是合成潜在 K 选择性阿片类药物的有吸引力的起始材料。使用铬(w)试剂已经实现了几种吗啡肽衍生物的10-亚甲基直接转化为10-酮基,尽管收率通常适中。然而,thebaine 3 的甲氧基二烯系统受到强氧化剂的攻击。我们在这里报告了通过已知的表二氧化物 4 和 10-0x0衍生物 7(方案 1)从 thebaine 3 合成 10-氧代茶碱 9 的 4 步法。我们报道了2,thebaine 3 在苯中与四硝基甲烷和氧气反应,出乎意料地产生了桥接过氧化物 4 作为主要产物。然而,大约一半的thebaine同时转化为其三硝基甲烷盐。在本研究中,我们通过在苯中进行硝化反应,使氧气和氨2C流缓慢通过混合物,将表二氧化物4的产率提高到约70%。如前所述,用乙醇中的氢氧化钠处理表二氧化物,2b得到酮醇7的高产率。用过量的三丁基锡 h~dride,~ 在甲苯回流下加热,去除 14P-硝基。缓慢加入自由基发生剂偶氮异丁腈以促进还原,以70%的收率进行还原。最后,将可待因衍生物8与吡啶中的三氯氧磷脱水,得到10-氧代噻吩9(73%)。通过将产物的光谱与thebaine 3的光谱进行比较,以及通过以下变换,可以很容易地辨别出结构9。Thevinone 11 是 thebaine 和 but-3-en-2- one 的环加合物,是一系列重要强效镇痛药的前体^.^ 当 10-氧代thebaine 9 用过量的 MeO' 3 6 ii 4 7 I Iii iv Me0 MeO MeO' OH 5 8 IV Meo-NMe MeO' MeO' O&Me 1o 加热时;x=o 9 11;X = H2 方案 1 试剂和条件:i, C(NO2),4,-NH, in PhH at 2OOC;ii, 铝,O,;iii, EtOH中的NaOH在20OC;iv, Bu,SnH 和 [MezC(CN)Nlz 在 PhMe 中 11 1 “C;v, POCl3-C5H,N在PhMe中11 1 “C;vi, MeCOCH=€H, 在PhH中,在80 OC Me0 H 12丁烯酮中,相应的环加合物10以86%的收率形成。同样,10-氧代噻吩酮10的结构和立体化学性质是根据其'H NMR谱图与维诺酮11的'H NMR谱图的相似性推导出来的.环加成的副产物('H NMR)被初步鉴定为10-氧代噻吩酮10的7p差向异构体。在重结晶之前,将表二氧化物 4 在中性 I11 级氧化铝上通过色谱法常规纯化 2'。当无意中使用I级氧化铝时,有效地转化为异构体“异氧化物”5。结构5由以下化学和光谱性质推导出来。与表二氧化物4,2b不同,异二氧化物5不与三苯基膦或乙酸中的碘化钠反应。此外,质谱显示出强烈的分子离子峰,这与表二氧化物的光谱不同。显然,异二氧化物不是过氧化物。IR 和 NMR 光谱显示不存在羟基和羰基以及任何新形成的 C=Cdouble 键。因此,异二氧化物 5 是六环的,就像它的前体 4 一样。'H 和 I3C NMR 谱图表明存在一个新的缩醛亚甲基 [8-H, 6, 105.6 和 & 5.37 (s)]。值得注意的是,另一个亚甲基[7-H,6,120.0和6,5.73(d,J 1.4 Hz)]在异构化过程中也与氧相连。显然,随着表二氧化物 4 中过氧化物键的裂解而发生了重排,可能是由氧化铝作为路易斯酸催化的,以及相邻的亚甲基碳 C-7 或 C-9 迁移到氧气上。因此,考虑了异二氧化物的替代结构5和6。前者更好地解释了'H和I3C的化学位移以及邻近耦合常数J9.104.4 Hz.当I3C-'H NMR相关性显示(见经验部分)缩醛碳6 105.6是C-8而不是C-10时,结构5得到证实(6 76.6)。C-7 而不是 C-9 迁移到表二氧化物 4 中的氧 (0-8) 上,与过氧化物裂解相一致,将有利于 7,8- 键和过氧化物链接的反排列,如图 12 所示,基于已发表的 2“ X 射线结构。然后,另一个氧 (0-10) 对 C-8 产生的阳离子的攻击将形成 5 元缩醛环。通过用三苯基膦还原表二氧化物4而形成的环氧化物2b中存在类似的8a,lOa-环氧键。实验一般.-M.p.s.在Kofler热载物台显微镜上测定。在Perkin-Elmer 580或953光谱仪上记录氯仿溶液的红外光谱。'H NMR 波谱为 90 MHz 是用 Perkin-Elmer R34 波谱仪获得的。使用布鲁克波谱仪获得了 90.6 和 50.3 MHz 的 I3C NMR 谱图,以及 360 和 200 MHz 的 'H 谱图。100 MHz 处的 'H 频谱是用瓦里安 XL 100 光谱仪获得的。记录氘氯仿溶液的所有NMR谱图。J 值以 Hz 为单位。 质谱由 EI 在 70 eV 下使用 AEI MS9 仪器产生。TLC采用默克GF254硅胶,1994年1月1日由水泵辅助流动J.CHEM.SOC.PERKIN TRANS.1。Woelm 氧化铝用于柱层析。除非另有说明,否则将有机溶剂在硫酸镁上干燥,并用Buchi Rotavapor蒸发。表二氧化物的改进制备 4.-四硝基甲烷由发烟硝酸和乙酸酐制备.6 为了获得最佳效果,发烟硝酸从混合物中新鲜重新蒸馏,其中含有其体积的三分之一的浓硫酸。将四硝基甲烷蒸气蒸馏,连续用水洗。碳酸钠和水再干燥(Na2S04);6J50.3兆赫;CDCl,-C,D,(4:l)] 119.8 (nonet,JC,N9.4)。'H光谱同样没有显示来自任何重要杂质的信号。在室温下,将干燥的氨气和干氧缓慢地通过苯(500cm3)中的thebaine(18.73g,60.2mmol)溶液,然后在苯(100cm3)中滴加四硝基甲烷(1 8.87g,96.3mmol)在20分钟内连续通过两种气体。两种气体的通过继续持续2小时,在此期间,从反应混合物中分离出红色油并收集在烧瓶底部。将上清液,苯溶液从油中倒出,然后用苯(2×150cm3)洗涤。CAUTlON:红油中含有三硝基甲醵,加热时可能剧烈分解。将合并后的苯溶液先后用水、碳酸钠和水洗涤,然后干燥、蒸发。将残余油在中性111级氧化铝或TLC级二氧化硅的色谱柱上色谱,得到表二氧化物4(16.76g,72%),m.p.160“C(来自乙酸乙酯)(lit.,2b 160-161”C)。将异二氧化物5.-表二氧化物(400mg)4吸附到中性I级氧化铝柱(1 5 g)上,约2 h后用氯仿己烷洗脱,得到异二氧化物5(380 mg)。从乙醇中得到产物5的重结晶得到物质(295mg,74%),熔点270-271“C(发现:C,59.0;H,5.0;N, 7.1%;米',388.1276。C19H2*N20,需要C,58.8;H,5.2;N,7.2%;米,388.1270);v,,,/cm-' 1549、1450、1225 和 1285;6,(360 MHz) 6.86 和 6.75 (ABq, J 8.1, 1-和 2-H), 5.73 (d, J 1.4, 7-H), 5.37 (s, 8-H), 5.21 (d, J 1.4, 5-H), 5.12 (d, J4.4, 10-H), 4.47 (d, J4.4, 9-H), 3.88 (s, 3-OMe), 3.44 (s, 6-OMe), 2.54 (s, NMe), 2.53 (m, 16-H,), 2.39 (ddd, J 13.0、10.3 和 6.9、15,,-H) 和 1.78 (dt、J 13.0 和 2.7、15eq.-H);6、(90.6兆赫)、154.8(C-6)、146.1(C-3)、145.1(C-4)、130.3(C-12)、125.9(C-1 l)、120.0(C-7)、119.3(C-1)、113.9(C-2)、105.6(C-8)、95.5(C-14)、92.7(C-5)、76.6(C-lo)、71.3(C-9)、56.3(OMe)、56.1(OMe)、46.6(C-l3)、45.8(C-l6)、43.1(NMe)和31.3(C-15)。I3C-'H 相关性(50.3 和 200 MHz)表明,结构 5 中的 C-8 而不是结构 6 中的 C-10 是缩醛碳 (6, 105.6)。因此,以下 1 键和 3 键 13C-lH 偶联允许连续识别 10-H、C-10、8-H 和 C-8 的信号:C-12 (8 130.3) 与 1-H (6.87)、15,,-H (2.38) 和 10-H (5.12) 偶联;C-10 (76.6) 与 10-H 和 8-H (5.37);和C-8(105.6)与8-H和10-H。 8,14-二氢-8/3-羟基-14P-硝基-1,0-氧代噻吩7.-表二氧化物4(600mg)在室温下悬浮在乙醇(75cm3)中,并用水溶液氢氧化钠(4mol dm-3;约0.2 an3)处理。将混合物搅拌18小时,此时已形成澄清溶液。Work-up2' 得到硝基酮 7 (560 mg, 9379, m.p. 220°C (from 甲醇) (lit.,2b 219 “C) (Found: C, 58.8;H,5.3;N,7.1。计算。对于C19H20N20,: C, 58.8;H,5.2;N,7.2%)。2b 8,14-二氢-8/3-羟基-10-氧代噻吩 %-硝基酮 7 (2.00 g, 5.15 mmol) 和三丁基氢化锡 (9.00 g, 3 1 mmol) 在干甲苯 (250 cm3) 中回流加热 J.CHEM. SOC. PERKIN TRANS. 1 1994 氮和偶氮异丁腈在甲苯中缓慢加入到混合物中, TLC 监测的反应过程。继续添加,直到硝基化合物的还原几乎完成。所需的时间(约2小时)和偶氮化合物的数量(大量过量)取决于添加速率。将混合物再加热2小时,然后蒸发以产生油状残留物。残留物用乙腈(100cm3)和己烷(100cm3)振荡。乙腈层用己烷(4×100cm3)洗涤,然后蒸发得到黄绿色固体。在用乙酸乙酯洗脱的硅胶(TLC级)色谱柱上依次得到硝基化合物7(0.27克)和羟基酮8(1.28克,72%),熔点158-160“C(来自甲醇)作为第一批制备;后来的批次有 m.p. ca.260“C (decomp.)从235“C烧结(来自乙醇)(发现:C,66.3;H,6.15;N,4.0%;M+,343.1413。C,,H,,NO,需要 C,66.5;H,6.2;N,4.1%;米,343.1419);v,,,/cm-' 3600、3400、1672、1620 和 1600;v,,,(KBr)/cm-l 3528、1665、1624 和 1605;6,(200 MHz)7.38和6.80(ABq,J8.4,l-and2-H),4.95(d,J1.3,5-H),4.82(d,J 1.8, 7-H), 3.92 (s, 3-OMe), 3.78 (dt, J 9.3 and ca. 1.5, 8-H), ca. 3.56 (信号部分被遮挡, 9-H), 3.55 (s, 6-OMe), 2.72 (ddd, J 12.1, 5.0 and 1.8, 16eq.-H), 2.44 (s, NMe), 2.37 (td, 部分遮挡, J 12.1 and 4.5, 1 6ax.-H), 2.27 (dd, J 9.3 and 2.6, 14-H), 2.10 (td, J 12.3 和 5.0, 150x.-H), 1.95 (ddd, J 12.5, 4.3 和 1.8, 15eq,-H) 和 1.72 (br s, OH, exch.with D,O);6、(50.3兆赫)、34.8(C-15)、42.3(C-13)、43.5(NMe)、47.3(C-16)、51.5(C-14)、54.9(OMe)、56.3(OMe)、65.9(C-8或-9)、66.0(C-9或-8)、87.5(C-5)、104.7(C-7)、113.5(C-2)、118.7(C-1)、125.2(C-1l)、136.7(C-12)、143.8(C-4)、150.2(C-3)、151.6(C-6)和192.4(C-10)。将10-氧代噻吩9.-羟基酮8(1.00g),干燥吡啶(4cm3)和新鲜蒸馏的氯氧磷(1cm3)在氮气下在干燥的甲苯(1 50 cm3)中回流加热3 h,此时已分离出黑色油。将混合物蒸发至低体积,并用足够的水溶液处理残留物,碳酸氢钠使混合物呈明显的碱性。分离甲苯和水溶液层,并用甲苯(4 x 40 cm3)萃取水溶液层。合并后的甲苯溶液用水溶液、碳酸氢钠洗涤、干燥、蒸发。通过反复加入甲苯和蒸发从残留物中除去吡啶。将所得的黄绿色固体在硅胶柱(TLC级)上色谱。用氯仿洗脱,然后用氯磷-甲醇(10:1)得到绿色油(0.77克),其缓慢结晶。由乙醇重结晶得到10-氧代噻吩9(0.69g,7373,熔点195-198“C(发现:C,70.3;H,5.8;N,4.3%;M+:325.1305。Cl9H1,NO4 需要 C, 70.1;H,5.9;N,4.3%;米,325.13 14);v,,,/cm- ' 1680、1666 和 1607;A,,,(MeOH)/nm 263 (E 12 900 dm3 mol-' cm-'), 285 (10 450) 和 330 (8470);6,(200 MHz) 7.35 和 6.76 (ABq, J 8.4, 1-和 2-H), 5.64 (d, J 6.5,8-H), 5.38 (s, 5-H), 5.09 (d, J 6.5,7-H), 3.92 (s, 3-OMe), 3.62 (s, 6-OMe 和 9-H), 2.77 (ddd, J 12.6, 6.5 和 2, 16eq-H), 2.69 297 (td, J 12.4 和 3.5, 16ax-H), 2.52 (s, NMe)、2.28(td,J 12 和 6.4,15,,-H)和 1.87(ddd,J 12.6、3 和 2,15eq-H);6,(50.3 MHz) 36.8 (C-l5), 43.4 (NMe), 47.4 (C-16), 47.7 (C-l3), 55.1 (OMe), 56.3(OMe),70.5(C-9),88.5(C-5),96.4(C-7),1 12.3(C-8),113.0(C-2),119.7(C-1),125.4(C-11),130.7(C-12),138.7(C-14),143.9(C-4),149.6(C-3),152.4(C-6)和193.8(C-10)。首先在短柱硅胶(TLC级)上的乙醚中,然后在用乙醚显影的二氧化硅板上。用乙酸乙酯萃取具有R,约0.4的条带,得到7a-乙酰基-6,7,8,14-四氢-1O-氧代-~~,14a-乙烯基thebaine(1,0-氧代theuinone)10(1,26mg,8679,m.p.129至131“C(来自甲醇)(发现:C,69.8;H,6.4;N,3.5。C23H,,N0,需要C,69.9;H,6.3;N,3.5%);vmax/cm-' 1719 和 1675;6、(200 MHz) 7.28 和 6.76 (ABq, J 8.4, 1- 和 2-H), 5.98 (dd, J8.8 和 1.2, 18-H), 5.55 (d, J8.8, 17-H), 4.68(d,J1.2,5-H), 3.92(s,3-OMe), 3.61(s,6-OMe), 3.18 (s, 9-H), 2.48 (s, NMe), 2.16 (s, Ac) 和 1.39 (m, 8a-H);m/z 395 (M'), 352 和 325.TLC 前的产物 10 在 6 6.13 (dd, J ca. 9 和 1, 18-H)、5.44 (d, J 8.8, 17-H) 和 5.05 (d, J ca. 1, 5-H) 处显示出微弱的'H NMR信号,可能是由相应的 7p-乙酰基衍生物中指示的质子引起的。致谢 我们感谢 SERC 和 Reckitt and Colman Ltd(赫尔)的财政支持,感谢 C. P. Chapleo 博士和 J. W. Lewis 博士(Reckitt 和 Colman)对这项研究的兴趣,感谢 I. H. Sadler 博士(爱丁堡)和 D. S. Rycroft(格拉斯哥)提供 NMR 波谱。参考文献 1 S. Archer, A. Seyed-Mozaffari, S. Ward, H. W. Kosterlitz, S. J. Paterson, A. T. McKnight and A. D. Corbett, J. Med. Chem., 1985, 28, 974, 以及其中引用的参考文献。另见A.B.McElroy, D. E. Bays, D.1。C. Scopes, A. G. Hayes 和 M. J. Sheehan, J. Chem. Soc., Perkin Trans.我,1990 年,1563 年。2 (a) R. M. Allen, C. J. Gilmore, G. W. Kirby and D. J. McDougall, J. Chem. Soc., Chem. Commun., 1980, 22;(b) R. M. Allen, G. W. Kirby 和 D. J. McDougall, J. Chem. Soc., Perkin Trans.我,1981 年,1143 年;(c) R. J. Kobylecki, I. G. Guest, J. W. Lewis和G. W. Kirby, DTOLS 2,812,580/1978 (Chem. Abstr., 1979,90, 87709t)。3 N.小野,H.Miyake, R. Tamura 和 A. Kaji, Tetrahedron Lett., 1981, 1705.4 K. W. Bentley 和 D. G. Hardy, J. Am. Chem. Soc., 1967,89,3267.5 L. M. Harwood, Aldrichimica Acta, 1985, 18,25.6 P. Liang, Organic Synth., Coll. Vol. 3, John Wiley, New York, 1955, p. 803.论文 3/05418G 收稿日期 1993年9月9日 录用日期 1993年10月11日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号