首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Interferometric velocity analysis using physical and nonphysical energy
【24h】

Interferometric velocity analysis using physical and nonphysical energy

机译:Interferometric velocity analysis using physical and nonphysical energy

获取原文
获取原文并翻译 | 示例
           

摘要

In controlled-source seismic interferometry, waves from a surrounding boundary of sources recorded at two receivers are crosscorrelated and summed to synthesize the interreceiver Green's function. Deviations of physically realistic source and receiver geometries from those required by theory result in errors in the Green's function estimate. These errors are manifested as apparent energy that could not have propagated between receiver locations-so-called nonphysical energy. We have developed a novel method of velocity analysis that uses both the physical and nonphysical wavefield energy in the crosscorrelated data generated between receiver pairs. This method is used to constrain the root-mean-square (rms) velocity and layer thickness of a locally 1D medium. These estimates are used to compute the piece-wise constant interval velocity. Instead of suppressing multiple energy as in conventional common midpoint velocity analysis, the method uses the multiply reflected wavefield to further constrain the rms velocity and layer-thickness estimates. In particular, we determined that the nonphysical energy contains useful physical information. By using the nonphysical energy associated with the truncation of the source boundary and the crosscorrelation of reflected waves, a better-defined estimate of the rms velocity and layer thickness is achieved. Because this energy is excited far from the receiver pair, the technique may be ideally suited to long-offset seismic reflection data. We found that interferometric velocity analysis works best to characterize the first few layers beneath a receiver array. We have considered an acquisition configuration that can be used in a marine seismic setting.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号