首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi_(0.5)Mn_(1.5)O4
【24h】

3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi_(0.5)Mn_(1.5)O4

机译:阳极骨架TiNb2O7/尖晶石的3V全电池性能 LiNi_(0.5)Mn_(1.5)O4

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The rechargeable lithium-ion batteries now widely used in cell phones, laptop computers, and digital cameras generally use a graphitic carbon as the anode and lithiated transitional-metal oxide cathodes, for example, LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 LiCoO_2 and LiFePO4, because graphite is inexpensive and has better safety characteristics and a longer cycle life compared with a lithium—metal anode. However, like lithium, a charged carbon anode has its electrochemical potential (Fermi energy) poorly matched to the LUMO of the organic liquid-carbonate electrolyte, which is about 1 eV below the Fermi energy of lithium. Therefore, a passivating solid—electrolyte interface (SEI) layer is formed on the carbon to prevent further reduction of the electrolyte. In the case of a carbon anode, a charging voltage V_(ch) electroplates lithium on the SEI layer during a fast charge. On subsequent repeated charges, lithium dendrites extend from the lithium layer; dendrite growth across the electrolyte short-circuits the battery to fire the flammable electrolyte. However, a carbon-buffered alloy having a displacement reaction at a V ≈ 0.8 V versus Li~+/Li~0 can allow a fast charge. Nevertheless, the formation of a Li~+-permeable passivating SEI layer on the anode increases the impedance of the anode and robs Li from the cathode irreversibly on the initial charge to reduce the limiting capacity of a cell. ' Therefore, there is motivation to identify a large-capacity insertion-compound anode having a voltage range of 1.0 < V ≤ 1.5 V versus Li~+/Li~0.
机译:现在广泛用于手机、笔记本电脑和数码相机的可充电锂离子电池通常使用石墨碳作为阳极和锂化过渡金属氧化物阴极,例如LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 LiCoO_2和LiFePO4,因为石墨价格低廉,与锂金属负极相比具有更好的安全特性和更长的循环寿命。然而,与锂一样,带电碳阳极的电化学势(费米能)与有机液态碳酸酯电解质的 LUMO 不匹配,后者比锂的费米能量低约 1 eV。因此,在碳上形成钝化固-电解质界面(SEI)层,以防止电解质进一步还原。在碳阳极的情况下,充电电压V_(ch)在快速充电期间将锂镀在SEI层上。在随后的重复充电中,锂枝晶从锂层延伸出来;电解液上的枝晶生长使电池短路以点燃易燃电解质。然而,在 V ≈ 0.8 V 与 Li~+/Li~0 时发生置换反应的碳缓冲合金可以实现快速充电。然而,在阳极上形成Li~+渗透的钝化SEI层会增加阳极的阻抗,并在初始电荷时不可逆地从阴极夺走Li,从而降低电池的极限容量。因此,有必要确定一种电压范围为 1.0 < V ≤ 1.5 V 与 Li~+/Li~0 的大容量插入复合阳极。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号