...
首页> 外文期刊>Applied and Environmental Microbiology >Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms
【24h】

Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms

机译:Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms

获取原文
获取原文并翻译 | 示例

摘要

Pesticides are key stressors of soil microorganisms with reciprocal effects on ecosystem functioning. These effects have been mainly attributed to the parent compounds, while the impact of their transformation products (TPs) has been largely overlooked. We assessed in a meadow soil (soil A) the transformation of iprodione and its toxicity in relation to (i) the abundance of functional microbial groups, (ii) the activity of key microbial enzymes, and (iii) the diversity of bacteria, fungi, and ammonia-oxidizing microorganisms (AOM) using amplicon sequencing. 3,5-Dichloroaniline (3,5-DCA), the main iprodione TP, was identified as a key explanatory factor for the persistent reduction in enzymatic activities and potential nitrification (PN) and for the observed structural changes in the bacterial and fungal communities. The abundances of certain bacterial (Actinobacteria, Hyphomicrobiaceae, Ilumatobacter, and Solirubrobacter) and fungal (Pichiaceae) groups were negatively correlated with 3,5-DCA. A subsequent study in a fallow agricultural soil (soil B) showed limited formation of 3,5-DCA, which concurred with the lack of effects on nitrification. Direct 3,5-DCA application in soil B induced a dose-dependent reduction of PN and NO 3 -N, which recovered with time. In vitro assays with terrestrial AOM verified the greater toxicity of 3,5-DCA over iprodione. "Candidatus Nitrosotalea sinensis" Nd2 was the most sensitive AOM to both compounds. Our findings build on previous evidence on the sensitivity of AOM to pesticides, reinforcing their potential utilization as indicators of the soil microbial toxicity of pesticides in pesticide environmental risk analysis and stressing the need to consider the contribution of TPs in the toxicity of pesticides on the soil microbial community.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号