首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >N-arylphthalazinium cations: synthons for biphthalazinylidenesviaendocyclic phthalazinium ylide intermediates
【24h】

N-arylphthalazinium cations: synthons for biphthalazinylidenesviaendocyclic phthalazinium ylide intermediates

机译:N-芳基邻苯二甲嗪阳离子:双邻苯二甲酰亚胺内环酞嗪酰化物中间体的合成子

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1992 N-Arylphthalazinium Cations: Synthons for Biphthalazinylidenes via Endocyclic Phthalazinium Ylide Intermediates Richard N. Butler" and Carmel S. Pyne Chemistry Department, University College Galwa y, Ireland Treatment of 2-aryl-l -hydroxy-l,2-dihydrophthalazines with HCIO, in MeCN gave 2-N-arylphthalazinium cations as perchlorate salts. These, when heated with NaOAc in MeCN gave good yields of biphthalazinylidenes via an endocyclic 2-arylphthalazin-2-ium-1-ide intermediate. The presence of the ylide intermediate is supported by deuterium protium exchange at C-1 in the phthalazinium cation. At ambient temperature in water some nucleophiles added to the cations to give 1-substituted-2-a ry I-1,2-dihyd rop htha lazi nes. Recently we reported' the first biphthalazinylidenes 4 obtained by heating the 1 -hydroxy-1,2-dihydrophthalazines1with acetic acid in acetonitrile. The ylidenes proved to be particularly interesting because of the pure trans-folded nature of the alkene moiety of the ylidene linkage.' We proposed the mechanism outlined in Scheme 1 as the route to the ylidenes.This involved *-c6w-p I -dr 1 2 2 c----H+ 4 3 Scheme 1 Reagent: i, HOAc in MeCN a phthalazinium cation 2 which was deprotonated to the reactive phthalazinium ylide intermediate 3which reacted with the precursory cation 2 to give the ylidene. The proposed mechanism was supported by reactions with the additives, such as sulfur, dimethyl acetylenedicarboxylate and N-phenyl-maleimide. These gave new ylidene products which were consistent with reactions between the additives and inter- mediates, such as 2 and 3, but they were not conclusive.We present results herein which lend support for the proposed mechanism, because they establish the existence of the species 2 and 3 and show that together they can give rise to high yields of the ylidenes 4. Results and Discussion The cations 2 should be stable since they have the 1h-naphthalene aromatic electronic structure. We isolated these cations in high yields as crystalline solid perchlorate salts 5 (Scheme 2) by treating compounds 1 with perchloric acid in acetonitrile followed by precipitation with ether (Table 1). The salts 5 were identified from microanalysis, 270 MHz proton and carbon-13 NMR spectra which proved their structure.All of the required signals were clearly identifiable and there was no serious overlap. In particular the C=N carbons with their protons HA and H, stood out in the proton and carbon spectra 4 6 7 R = Ac, COCD3 8 R=H /heat 10.2-10.35 5 9 X,CN 1 X.OH Scheme 2 Reagents: i, NaOAc in MeCN; ii, NaOAc-DOAc in MeCN. Y = a Me0 b Me; c H; d Br; e NO,; f C1. Some key proton and carbon NMR shifts shown (Fig. 1) and the related signals were identified by selective proton decoupling during the carbon-1 3 NMR spectral measurements. When the salts 5 were heated with one mol of sodium acetate under anhydrous conditions in acetonitrile the ylidenes 4 were readily obtained in yields which were comparable and, in most cases, better than the yields obtained by heating compounds 1 with acetic acid.' This reaction with the salts 5 provided a cleaner and better route to the ylidenes and side reactions which were encountered with acetic acid did not interfere.For example, the pN02 derivative 4e (Ar = p-NO,C,H,-) could not be made previously because of complicated equilibria involving the acyclic aldehyde form of compound le which gave quite different chemistry on treatment with acid., However, compound 4e was obtained readily by heating compound 5e with NaOAc in acetonitrile (Table 1). When deuterioacetic acid was introduced into the reactions of 5 with NaOAc in acetonitrile and the starting material 5 recovered before the full yield of ylidene 4 built up, significant deuterium exchange at HA in the cation was observed using proton and carbon-13 NMR spectra (Fig.1). This exchange at HA occurred only in presence of NaOAc and on heating. It was most effectively seen with 2 mol of CD,C02D present. The salts 6 recovered from these reactions showed small amounts of contamination (,a,.,.-l'-11 10 9 8 160 150 SH 6c CHB, Fig. 1). Biphthalazinylidenes 4.-Typically a solution of 5c (0.25 g, 0.825 mmol) in dry acetonitrile (10 cm') was treated with anhydrous sodium acetate (70 mg, 0.825 mmol) and the mixture was stirred under reflux for 3 h. On cooling compound 4c (71) separated. Treatment of the acetonitrile mother liquor with diethyl ether resulted in recovery of 5c and no other compounds were encountered.For substrate 5e the mixture was stirred under reflux for 3 h and cooled to give the previously unattainable red coloured derivative 4e,(60) as a mixture with compound le (37). The ylidene 4ewas removed in chloroform in which le is insoluble;4e, m.p. 282-283 "C(from MeCN) (Found: C, 66.7; H, 3.5; N, 16.5. C,gH,gN,O, requires C, 66.9; H, 3.6; N, 16.7). When aqueous solutions of NaOH were treated with equimolar quantities of compounds 5 and the mixtures stirred at ambient temperatures for 30 min, the compounds 1 (d90) separated and were recrystallised from MeCN. Similar treat- ment of aqueous solutions of 5 (0.98 mmol, 10 cm3) with aqueous KCN (0.98 mmol, 10 cm') gave compounds 9 e.g.9c, m.p. 154-155 "C (EtOH) (94) (Found: C, 76.8; H, 4.6; N, 18.0. Cl5Hl1N3requires C, 77.25; H, 4.7; N, 18.05); S,(CD,),-Fig. 1 (a) Lower aromatic region of the proton and carbon-13 (inset) NMR spectra of 5c in (CD,),SO; (b) The same regions for a sample of 5c recovered from being heated with NaOAc and DOAc in MeCN during which a 40 yield of 4c was formed yields of the products 1 and 9 from simple addition of the nucleophile in a reaction that can be synthetically useful. The exchange results (Fig. 1)suggest that the endocyclic ylide 3 is present in anhydrous hot solutions of the cation 5 and sodium acetate and that such solutions containing the species 5 and 3 give good yields of the ylidenes 4.As far as we are aware,' this is the first report of an endocyclic phthalazinium ylide intermediate. Deuterium-hydrogen exchange has been repor- ted3 for substituted amino-pyridazines and pyridazinones and an endocyclic pyridinium ylide is involved in the ready deuterium-hydrogen exchange which occurs at C-2 and C-6 of the pyridinium There are reports of endocyclic quinolinium6 and azolium ylide~'*~ and recently 1,3-di-(1-t The name 'ylide' is widely used (ref. 5 and references therein) for I nitrogen heterocyclic systems containing the moiety +I-.SO 7.2 (s, 1 H, 1 -CH), 7.24-7.26 (m) and 7.54-7.74 (m, 9 H, Ar)These and 8.20 (s, 1 H, 4CH); (with multiplicity for off-resonance systems can also be referred to as ylidenes if a non-octet carbene form decoupling), 45.3 (d, C-1), 115.8 (d, Nph-C-2'), 123.9(s), 126.25 (s, C-4a, C-8a); 116.4 (s, CN), 122.7, 125.8, 129.3, 130.4 Nj:,is drawn.Herein they are referred to as ylides and drawn in the and 131.8 (all ds, ArCHs), 139.5 (d, C-4) and 145.0 (s, N-Ph, octet form. c-1'). J. CHEM. SOC. PERKIN TRANS. 1 1992 References 1 R. N. Butler, A. M. Gillan, F. A. Lysaght, P. McArdle and D. Cunningham, J. Chem. SOC., Perkin Trans. I, 1990,555. 2 R. N. Butler, A. M. Gillan, J. P. James, P. McArdle and D. Cunningham, J. Chem. Res., (S),1989,62; (M), 1990,0523. 3 cf. M. Tisler and B. Stanovnik, in Comprehensive Heterocyclic Chemistry, eds. A. R.Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 3, p. 22. 4 J. A. Zoltewicz and C. L. Smith, J. Am. Chem. SOC., 1967,89,3358. 5 T. L. Gilchrist, in Heterocyclic Chemistry, Pitman Publishing Ltd., London, 1985, pp. 252-253. 6 H. Quast and E. Frankenfeld, Angew. Chem., Int. Ed. Engl., 1965, 4, 691; H. Quast and A. Gelleri, Liebigs Ann. Chem., 1975, 929 and 939. 7 H. Quast and S. Hunig, Chem. Ber., 1966,99,2017. 8 A. Takamizawa, H. Harada, H. Sat0 and Y. Hamashima, Heterocycles, 1974,2, 52 1. 9 A. J. Arduengo 111, R.L. Harlow and M. Kli'ne, J. Am. Chem. SOC., 1991,113,361; cf. R.Dagani, Chem. Eng. News, 1991,19. Paper 2/04523K Received 2 1st August 1992 Accepted 17th September 1992
机译:J. CHEM. SOC. PERKIN TRANS. 1 1992 N-芳基酞嗪阳离子:通过内环酞嗪鎓中间体合成双酞基尼基化合物 Richard N. Butler“ 和 Carmel S. Pyne Chemistry Department, University College Galwa y, Ireland 用 HCIO 处理 2-芳基-l -羟基-l,2-二氢酞嗪,在 MeCN 中得到 2-N-芳基酞嗪阳离子作为高氯酸盐。当在MeCN中用NaOAc加热时,通过内环2-芳基酞嗪-2-鎓-1-二胺中间体获得良好的邻苯二甲酰亚胺收率。酞嗪阳离子中C-1处的氘氚交换支持了酰化物中间体的存在。在环境温度下,在水中加入一些亲核试剂到阳离子中,得到1-取代的-2--a ry I-1,2-二氢化合物。最近,我们报道了通过在乙腈中加热1-羟基-1,2-二氢苯酞嗪1与乙酸而得到的第一个双苯二甲酰亚胺4。亚基化合物被证明特别有趣,因为亚基键的烯烃部分具有纯反式折叠性质。我们提出了方案 1 中概述的机制作为通往 ylidenes 的路线。这涉及 *-c6w-p I -dr 1 2 2 c----H+ 4 3 方案 1 试剂:i、HOAc 在 MeCN 中将酞嗪阳离子 2 去质子化为反应性酞嗪酰化物中间体 3,它与前体阳离子 2 反应得到亚基。所提出的机理得到了与硫、乙炔二甲酸二甲酯和 N-苯基马来酰亚胺等添加剂的反应的支持。这些产生了新的亚基产物,这些产物与添加剂和中间体(如2和3)之间的反应一致,但它们不是决定性的。我们在这里提出的结果为所提出的机制提供了支持,因为它们确定了物种 2 和 3 的存在,并表明它们一起可以产生高产的 ylidenes 4。结果与讨论 阳离子 2 应该是稳定的,因为它们具有 1H-萘芳香族电子结构。我们通过在乙腈中用高氯酸处理化合物 1,然后用乙醚沉淀,以高产率分离这些阳离子作为结晶固体高氯酸盐 5(方案 2)(表 1)。通过显微分析、270 MHz 质子和碳-13 NMR 谱图鉴定了 5 号盐,证明了它们的结构。所有必需的信号都清晰可辨,没有严重的重叠。特别是C=N碳及其质子HA和H,在质子和碳谱图中表现突出 4 6 7 R=Ac, COCD3 8 R=H /heat 10.2-10.35 5 9 X,CN 1 X.OH 方案 2 试剂:i, MeCN 中的 NaOAc;ii, MeCN中的NaOAc-DOAc。Y = a Me0 b 我;c H;d 溴;e 否,;f C1.在碳-1 3 NMR光谱测量过程中,通过选择性质子解耦识别了一些关键的质子和碳NMR位移(图1)以及相关信号。当盐5在乙腈中用一摩尔乙酸钠在无水条件下加热时,亚基化合物4的收率很容易获得,其收率相当,并且在大多数情况下,比用乙酸加热化合物1所获得的收率要好。与盐 5 的这种反应为亚基化物提供了更清洁、更好的途径,并且与乙酸遇到的副反应没有干扰。例如,pN02衍生物4e(Ar = p-NO,C,H,-)以前无法制备,因为化合物le的无环醛形式的复杂平衡,在用酸处理时会产生完全不同的化学性质,但是,通过在乙腈中用NaOAc加热化合物5e,可以很容易地获得化合物4e(表1)。当将氘乙酸引入 5 与乙腈中的 NaOAc 反应中,并且在亚基 4 的全部产率建立之前回收起始材料 5 时,使用质子和碳-13 NMR 谱图观察到阳离子中 HA 处的显着氘交换(图 1)。HA 的这种交换仅在存在 NaOAc 和加热时发生。在存在 2 mol CD,C02D 时最有效。从这些反应中回收的盐 6 显示出由于添加乙酸而来自化合物 7 和 8 的少量污染 (,a,.,.-l'-11 10 9 8 160 150 SH 6c CHB,图1)。联苯二甲酰亚胺4.-通常用无水乙酸钠(70mg,0.825mmol)处理5c(0.25g,0.825mmol)在干乙腈(10cm')中的溶液,并将混合物在回流下搅拌3小时。在冷却化合物4c(71%)分离。用乙醚处理乙腈母液后回收了5c,没有遇到其他化合物。对于底物5e,将混合物在回流下搅拌3小时并冷却,得到以前无法获得的红色衍生物4e,(60%)作为与化合物le(37%)的混合物。亚基4e在氯仿中除去,其中le不溶;4e, m.p. 282-283 “C(来自MeCN) (Found: C, 66.7;H,3.5;N,16.5。C,gH,gN,O,需要C,66.9;H,3.6;N,16.7%)。当NaOH的水溶液用等摩尔量的化合物5处理,混合物在环境温度下搅拌30分钟时,化合物1(d90%)分离并从MeCN中重结晶。用KCN(0.98mmol,10cm')水溶液5(0.98mmol,10cm')进行类似处理,得到化合物9,例如9c,m.p.154-155“C(EtOH)(94%)(发现:C,76.8;H,4.6;N,18.0。Cl5Hl1N3需要C,77.25;H,4.7;N, 18.05%);S,[(CD,),-图1 (a)质子和碳-13(插图)的下芳香区核磁共振波谱图为5c in (CD,),SO;(b) 在MeCN中用NaOAc和DOAc加热回收的5c样品的相同区域,在此期间形成4c产率的40%,产物1和9的产率来自在可合成有用的反应中简单添加亲核试剂。交换结果(图1)表明,内环酰化物3存在于阳离子5和乙酸钠的无水热溶液中,并且据我们所知,含有5和3种物质的这种溶液具有良好的酰化物产率 4.As 这是内环酞嗪酰化物中间体的首次报道。氘-氢交换已被重新用于取代的氨基哒嗪和哒嗪酮3,并且内环吡啶酰化物参与现成的氘-氢交换,该交换发生在吡啶的 C-2 和 C-6 有内环喹啉6 和唑基酰化物~'*~ 的报道,最近 1,3-二-(1-t “ylide”这个名字被广泛用于含有部分 %+I-.SO] 7.2 (s, 1 H, 1 -CH), 7.24-7.26 (m) 和 7.54-7.74 (m, 9 H, Ar)这些和 8.20 (s, 1 H, 4CH);(具有非共振系统的多重性,如果非八位字节卡宾形成解耦,也可以称为ylidenes),45.3(d,C-1),115.8(d,Nph-C-2'),123.9(s),126.25(s,C-4a,C-8a);116.4 (s, CN), 122.7, 125.8, 129.3, 130.4 Nj:,绘制。在这里,它们被称为ylides,并绘制在和131.8(所有ds,ArCHs),139.5(d,C-4)和145.0(s,N-Ph,八位字节形式c-1')中。J. CHEM. SOC. PERKIN TRANS. 1 1992 参考文献 1 R. N. Butler, A. M. Gillan, F. A. Lysaght, P. McArdle and D. Cunningham, J. Chem. SOC., Perkin Trans. I, 1990,555.2 R. N. Butler, A. M. Gillan, J. P. James, P. McArdle and D. Cunningham, J. Chem. Res., (S),1989,62;(M), 1990,0523.3 参见 M. Tisler 和 B. Stanovnik, in Comprehensive Heterocyclic Chemistry, eds. A. R.Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 3, p. 22.4 J. A. Zoltewicz 和 C. L. Smith, J. Am. Chem. SOC., 1967,89,3358.5 T. L. Gilchrist, in Heterocyclic Chemistry, Pitman Publishing Ltd., London, 1985, pp. 252-253.6 H. Quast 和 E. Frankenfeld, Angew.Chem., Int. Ed. Engl., 1965, 4, 691;H. Quast 和 A. Gelleri,Liebigs Ann. Chem.,1975 年,929 和 939 年。7 H. Quast 和 S. Hunig,Chem. Ber.,1966,99,2017。8 A. Takamizawa, H. Harada, H. Sat0 和 Y. Hamashima, Heterocycles, 1974,2, 52 1.9 A. J. Arduengo 111, R.L. Harlow and M. Kli'ne, J. Am. Chem. SOC., 1991,113,361;参见R.Dagani, Chem. Eng. News, 1991,19。论文 2/04523K 收稿日期: 1992年8月1日 录用日期: 1992年9月17日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号