...
首页> 外文期刊>Environmental Science & Technology: ES&T >Headspace analysis: a new application for isotopic characterization of dissolved organic contaminants
【24h】

Headspace analysis: a new application for isotopic characterization of dissolved organic contaminants

机译:Headspace analysis: a new application for isotopic characterization of dissolved organic contaminants

获取原文
获取原文并翻译 | 示例
           

摘要

Petroleum products and industrial solvents are among the most ubiquitous contaminants of soil and groundwater and the source of several common and hazardous volatile organic chemicals (VOCs). Volatilization is a key determinant of the fate of VOCs in the subsurface environment, impacting contaminant partitioning between the aqueous, gaseous, and nonaqueous liquid phases. This study uses stable carbon isotope analysis to investigate the isotopic effects involved in volatilization oftrichloroethylene (TCE) and toluene from both free product (or pure phase) and aqueous solutions. Results indicate that, during volatilization from the aqueous phase and from free product, the isotopic composition of TCE and toluene remains unchangedwithin reproducibility limits. These results have two important implications for contaminant hydrogeology. First, they suggest that carbon isotopic signatures may be useful in tracking contaminant transport between the vapor, aqueous, and NAPL phasessince they remain conservative during phase changes. Second, they demonstrate the utility of headspace extraction (sampling of the vapor phase or headspace above an aqueous solution) as a preparatory technique for isotopic analysis of dissolved VOCs.Headspace isotopic analysis provides a straightforward and rapid technique forδ{sup}(13)C analysis of dissolved organic contaminants at concentrations as low as hundreds of ppb

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号