首页> 外文期刊>Journal of mechanical design >Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases
【24h】

Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases

机译:Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases

获取原文
获取原文并翻译 | 示例
           

摘要

The conceptual design of effective actuation mechanisms for flapping wing micro air vehicles presents considerable challenges, with competing weight, power, authority, and life cycle requirements. This work utilizes topology optimization to obtain compliant flapping mechanisms; this is a well-known tool, but the method is rarely extended to incorporate unsteady nonlinear aeroelastic physics, which must be accounted for in the design of flapping wing vehicles. Compliant mechanism topologies are specifically desired to perform two tasks: (1) propulsive thrust generation (symmetric motions of a left and a right wing) and (2) lateral roll moment generation (asymmetric motions). From an optimization standpoint, these two tasks are considered multiple load cases, implemented by scheduling the actuation applied to the mechanism's design domain. Mechanism topologies obtained with various actuation-scheduling assumptions are provided, along with the resulting flapping wing motions and aerodynamic force/moment generation. Furthermore, it is demonstrated that both load cases may be used simultaneously for future vehicle control studies: gradual transition from forward flight into a turning maneuver, for example.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号