...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Application of configurational mechanics in characterizing contact fatigue life and its crack propagation: a numerical lattice-based approach
【24h】

Application of configurational mechanics in characterizing contact fatigue life and its crack propagation: a numerical lattice-based approach

机译:构型力学在表征接触疲劳寿命及其裂纹扩展中的应用:一种基于数值晶格的方法

获取原文
获取原文并翻译 | 示例

摘要

A numerical lattice-based approach equipped with a brittle erosion algorithm and material forces in the context of LEFM and configurational mechanics is introduced to analyze contact fatigue life and crack propagation of brittle solids under low amplitude cyclic loading using the classical Paris's law. Material force vectors at lattice nodes were employed in identifying potential crack path in high-cycle fatigue applications. A 2D plane strain pad-substrate system with contact formulations under constant compression and cyclic sinusoidal shear with constant amplitude was considered to investigate fatigue crack's growth rate and its shape in the substrate, made of hydrided brittle Zircaloy-4 used in nuclear industry. The capability of the lattice in predicting the crack extension path using the material force vectors at the crack tip is verified by comparing with analytical solutions for a centered crack domain under pure shear and direct tension loading, and also for an initial small surface crack for the contact fatigue pad-substrate system. Obtaining the total fatigue life by assuming a failure value for the crack length and confirming the Paris' law crack growth, the lattice results demonstrate that the fatigue crack path in the substrate is a curved trajectory which gradually reduces as the fatigue crack tip grows deeper into the substrate. Having simple constitutive formulation and straightforward erosion algorithm, this approach together with configurational mechanics implications can be employed in analyzing fretting fatigue problems.
机译:在LEFM和构型力学的背景下,引入了一种基于脆性侵蚀算法和材料力的基于晶格的数值方法,利用经典巴黎定律分析了脆性固体在低振幅循环载荷下的接触疲劳寿命和裂纹扩展。晶格节点处的材料力矢量用于识别高周疲劳应用中的潜在裂纹路径。考虑了一种二维平面应变垫-衬底系统,该系统具有恒定压缩和恒定振幅的循环正弦剪切的接触配方,以研究疲劳裂纹的扩展速率及其在基板中的形状,该基板由用于核工业的氢化脆性锆-4制成。通过与纯剪切和直接拉伸载荷下中心裂纹域的解析解以及接触疲劳垫-基体系统的初始小表面裂纹的解析解进行比较,验证了晶格利用裂纹尖端的材料力矢量预测裂纹扩展路径的能力。通过假设裂纹长度的失效值并确认巴黎定律裂纹扩展来获得总疲劳寿命,晶格结果表明,基体中的疲劳裂纹路径是一条弯曲的轨迹,随着疲劳裂纹尖端向基体深处的生长而逐渐减小。该方法具有简单的本构公式和简单的侵蚀算法,结合构型力学含义可用于分析微动疲劳问题。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号