...
首页> 外文期刊>journal of applied polymer science >Tensile recoveries of cotton modified with and without crosslinks
【24h】

Tensile recoveries of cotton modified with and without crosslinks

机译:Tensile recoveries of cotton modified with and without crosslinks

获取原文

摘要

AbstractWhen effect of the substrate is nullified, resiliency can be defined as a function of strain, time, and humidity. Determination of improvement in the immediate, or rapid, tensile recovery readily delineates differences due to chemical modifications. Delayed recovery is usually less improved than immediate. Crosslinking cotton with dimethylolethyleneurea (DMEU) increases tensile strain recovery as the number of crosslinks increase, reduces dependency of recovery upon external strain, and produces maximum recovery at about 65 R.H. Noncrosslinking treatments produce limited increases in tensile strain recovery. Measurements on yarns crosslinked with DMEU and then hydrolyzed indicate that incalculably few residual links may contribute to tensile recovery.N‐Methylol‐N'‐methylethyleneurea treated cotton displays physical blocking and water swelling which aid recovery. Oleoyl chloride esterified cellulose has tensile recovery probably due to molecular entanglements. Its delayed or viscoelastic recovery is the most improved with immediate recovery being the least improved. The higher the moisture regain, the greater tensile modulus reduction under wet conditions. Crosslinking with DMEU under dry conditions lessens this reduction in modulus. Improvements in the tensile recovery of strain and energy, for all samples and with varied conditions of humidity and strain, correspond linearly with unit

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号