首页> 外文期刊>The Journal of Clinical Investigation: The Official Journal of the American Society for Clinical Investigation >Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.
【24h】

Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.

机译:Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.

获取原文
获取原文并翻译 | 示例
           

摘要

Src-family kinases play a central role in regulation of hematopoietic cell functions. We found that mouse erythrocytes express the Src-family kinases Fgr and Hck, as well as Lyn. To directly test whether Fgr and Hck play any role in erythrocyte function, we analyzed red cells isolated from fgr-/-, hck-/-, and fgr-/- hck-/- knock-out mice. Mean corpuscular hemoglobin concentration and median density are increased, while K content is decreased, in fgr-/- hck-/- double-mutant erythrocytes compared with wild-type, fgr-/-, or hck-/- erythrocytes. Na/K pump and Na/K/Cl cotransport were not altered, but K/Cl cotransport activity was significantly and substantially higher (approximately three-fold) in fgr-/- hck-/- double-mutant erythrocytes. This enhanced K/Cl cotransport activity did not depend on cell age. In fact, in response to bleeding, K/Cl cotransport activity increased in parallel with reticulocytosis in wild-type erythrocytes, while abnormal K/Cl cotransport did not change as a consequence of reticulocytosis in fgr-/- hck-/- double-mutant erythrocytes. Okadaic acid, an inhibitor of a phosphatase that has been implicated in activation of the K/Cl cotransporter, inhibited K/Cl cotransport in wild-type and fgr-/- hck-/- double-mutant erythrocytes to a comparable extent. In contrast, staurosporine, an inhibitor of a kinase that has been suggested to negatively regulate this same phosphatase enhanced K/Cl cotransport in wild-type but not in fgr-/- hck-/- double-mutant erythrocytes. On the basis of these findings, we propose that Fgr and Hck are the kinases involved in the negative regulation of the K/Cl cotransporter-activating phosphatase. Abnormality of erythrocyte K/Cl cotransport in fgr-/- hck-/- double-mutant animals represents the first demonstration that Src-family kinases may be involved in regulation of membrane transport.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号