首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis of 4,4a-5,6,7,8-hexahydro-5β-hydroxy-4aβ,8α-dimethylnaphthalen-2(3H)-one, a versatile intermediate for sesquiterpene synthesis
【24h】

Synthesis of 4,4a-5,6,7,8-hexahydro-5β-hydroxy-4aβ,8α-dimethylnaphthalen-2(3H)-one, a versatile intermediate for sesquiterpene synthesis

机译:合成4,4a-5,6,7,8-六氢-5β-羟基-4aβ,8α-二甲基萘-2(3H)-酮,倍半萜合成的多功能中间体

获取原文
获取外文期刊封面目录资料

摘要

1977 2433Synthesis of 4,4a-5,6,7,8- Hexahydro-5P- hydroxy-4ap,8a-dimethylnaph-thalen-2(3H)-one, a Versatile Intermediate for Sesquiterpene SynthesisBy Michiharu Kato, Hiroshi Kurihara, Hiroshi Kosugi, Masataka Watanabe, Shigeru Asuka. and AkiraYoshikoshi, Chemical Research Institute of Non-aqueous Solutions, Tohoku University, Sendai 980, JapanTwo routes have been examined from 5~-acetoxy-4,4a,5,6,7,8-hexahydro-4a~-methylnaphthalen-2(3~) -one (1 0)to 4,4a,5,6,7,8-hexahydro-5~-hydroxy-4ap.8a-dimethylnaphthalen-2(3~)-one (1 ), a key intermediate for thesynthesis of some types of sesquiterpenoid. The route shown in Scheme 2 is preferable to that in Scheme 1(although the former is slightlythe more lengthy), giving compound (1) in ca. 48 overall yield from (1 0).THE title compound (1) is potentially a versatile key in-termediate for the synthesis of some representative typesof sesquiterpene.Compound (2a) would be obtainable on/I/// t(4)QH(7) (8) (9)saturation of the olefinic double bond followed by intro-duction of an isopropyl carbon unit at the ketone func-tion. Selinane (3) or guaiane (4) sesquiterpenes could bederived from (2a) on removal of the hydroxy-group or bysolvolytic rearrangement after conversion of the hydroxy-group into an appropriate leaving group such as sulphon-ates as in (2b), respectively. In fact, some guaianeM. Kato, H. Kosugi, and A. Yoshikoshi, Chem. Comm.,1970, 185.M. Kato, H. Kosugi, and A. Yoshikoshi, Chem. Comm.,1970, 934.sesquiterpenoids bulnesol (7), kessane (8), and globu-lo1 (9) have been synthesised from compound (1). Onthe other hand, fission of the peripheral (2,3-) or central(5,lO-) bond would lead to elemane (5) or germacrane (6)sesquiterpenes.Previously we reported the synthesis of the hydroxy-octalone (1) by the route shown in Scheme 1 from theacetoxy-octalone (lo), readily available from theWieland-Pvliescher ketone via a known pr~cedure.~ Wedescribe here the details of this synthesis of (1) and animproved route (Scheme 2).The unstable enol ether (11) was prepared from (10)according to Burn’s pr~cedure,~ i.e.by reaction with tri-ethyl orthoformate and a catalytic amount of toluene-$-sulphonic acid in dioxan (Scheme 1). The crude enolether was successively treated with the Vilsmeier reagent(Me,N-CHO-POCl, or Me,N*CHO-COCl,) , lithium alu-minium hydride, and then methyl iodide to obtain theammonium salt (14) v i a the iminium salt (12) and theamine (13).None of compounds (12)-(14) was suffi-ciently stable for analytically pure material to be ob-tained, although they were characterised spectroscopic-ally. Reductive cleavage of the carbon-nitrogen bond in(14) was performed with Raney nickel. This reaction,however, was capricious ; it gave the hydroxy-octalone(1) in good yield in some cases after acidic hydrolysis ofthe resultant enol ether (15) (which was also unstable),but complex mixtures were produced in other cases, andoptimum conditions for this reaction were not established.The poor reproducibility might be ascribed to high sensi-tivity of the reaction to the activity of the Kaney nickelused, or to impurities in the substrate which deactivatedthe Raney nickel, or to both.An equatorial orient-ation of the newly formed methyl group in (1) was ascer-tained from the coupling constant (1.8 Hz 6, of the olefinicJ . A. Marshall and J. A. Ruth, J . Org. Chem., 1974,39, 1971. * C. B. Boyce and J. S. Whitehurst, J . Chem. Soc., 1960, 2680.D. Burn, Tetrahedron, 1964, 20, 597.6 H. J . Ringold, J . Amer. Chem. Soc., 1963, 85, 16992434 J.C.S. Perkin IlH n.m.r. doublet. The best result obtained from reduc-tive cleavage of the ammonium salt (14) was an overallyield of the hydroxy-octalone (1) from (10) of ca. 60.sodium acetate, and reduction of the product with boro-hydride afforded the corresponding alcohol (17).Thisacid- and heat-sensitive alcohol was immediately treatedwith acetic acid at room temperature to -achieve dehydra-tion, affording the dienone (18) in .high yield. Theoily octalone (19) was then obtained by partial hydrogen-ation over palladium-barium sulphate. As expected,the secondary methyl group in (19) was axial, as was(1 0) (11) CH=N Me2CL' evidenced by the singlet nature of the olefinic proton(12) n.m.r. signal. To epimerise the axial secondary methylgroup to an equatorial one, the acetoxy-octalone (19)was treated with toluene-@-sulphonic acid in benzene;however the product was contaminated with an unidenti-fied by-product which was difficult to remove on a pre-In an improved procedure, the crystal-line acetal (20) was prepared, and deacetalised afterOEt OEt recryst allisation.The resultant acetoxy-oct alone (2 1)was hydrolysed with potassium carbonate giving the(15) hydroxy-octalone (1). The final product was also derivedin a similar overall yield from (20) by reduction withlithium aluminium hydride of the acetal (ZO), and hydro-lysis of the resultant hydroxy-octalin (22).By Scheme 2, the hydroxy-octalone (1) was preparedfrom (10) in ca. 48 over-all yield.AcO / / i i = Apt / /OEt +A- ( 1 ) parative scale. qJ+ @; mOEt CH2NMe2 CH2 N Me3I'(13) ( 1 4 )SCHEME 1 i, (EtO),CH-TsOH; ii, Vilsineier reagent; iii,LiAlH,; iv, MeI; v, Raney Ni; vi, H,SO,-H,OAlthough the foregoing route to (1) was relatively ex-peditious, the obstacle in the reductive cleavage of (14)could not be circumvented. We then turned to another EXPERIMENTAL1.r.spectra were taken with a Hitachi EPI-32 spectro-photometer, and n.m.r. spectra with a JEOL C-60-HLspectrometer (60 MHz) for solutions in CDC1, unless other-wise stated. Tetramethylsilane was used as an internalstandard and coupling constants are given in Hz.5P-A cetoxy-2-ethoxy-3,4,4a, 5,6,7-hexahydro-4ap-methyl-naphthalene ( 1 1) .-Ethyl orthoformate (33 ml, ca. 0.2 mol)and toluene-psulphonic acid (600 mg) were added to asolution of the acetoxy-octalone (10) (48 g, 0.216 mol) indry dioxan (200 ml), and the mixture was stirred a t roomAcO temperature for 3 h. Pyridine (15 ml) was added, and themixture was poured into ice-water and extracted withether.The extract was washed with water and brine, and Q-LA@;Ap3 dried. a glassy Removal mass (52.2 of g), the vmaX, solvent (film) 1 left 735, the 1 653, enol 1 ether 620, 1 (ll), 245,and 1 030 cm-l, 6 (CCl,) 1.01 (3 H, s), 1.14 (3 H, t, -1 7), 1.89AcO(12)/ / LOE tCHO CH20H(17) (16)(18) (19) (20)(22)(3 H, s ) , 3.70 (2 H, q, J 7), 4.5-4.8 (1 H, m, AcOCH), and4.97 (2 H, in, =CH).Although analytically pure material could not be ob-tained, the crude product was sufficiently pure to be used inthe next step (as shown by g.1.c.).8- Diwzethylaminomethyl- 2-ethoxy-5P- Jzydroxy- 3,4,4a, 5,6,7-hexahydro-4ap-methylnaphthalene ( 13) .-A solution of di-methylformamide (22 g, 0.3 mol) in dry dichlorometliane(100 ml) was added to a stirred solution of phosgene * '(22 g,0.22 mol) in the same solvent (100 ml) in an ice-bath.TheVilsmeier reagent was precipitated as a solid with evolutionof carbon dioxide. A solution of the enol ether (11) (40 8,0.16 mol) in the same solvent (100 ml) was added dropwise,giving a red solution immediately. After stirring for 3 h,SCHEME 2 i, NaOAc-H,O; ii, NaBH,; iii, HOA~-H,O; iv, the solvent was removed in vacua a t room temperature toH,-Pd(BaS0,); v, (CH,OH),-TsOH; vi, Me,CO-TsOH; leave a viscous deep red oil. A solution of the oil in dryvii, K,CO,-MeOH; viii, LiAlH,; ix, HC1-H,O tetrahydrofuran (500 ml) was added dropwise to a stirredsuspension of lithium aluminium hydride (8.0 g) in dryether (400 ml) under nitrogen, and the mixture was stirredchloride, see later.route (Scheme ')* The formy' ether (16) was Ob-hydrolysis of the crude iminium salt (12) with aqueoustained as in high Yield On * More reproducible results were obtained with phosphory1977a t room temperature for 12 11.The excess of reagent was de-composed with wet ether and then with a small quantity ofwater. Work-up gave the crude tertiary amine (13) (32.9 g)as a pale yellow oil, v,. (film) 3 400, 1 643, and 1 615 cm-l,6 1.00 (3 H, s), 1.30 (3 H, t, J 7), 2.20 (6 H, s, NMe,), 3.85(2 H, q, J 7), and 5.62 (1 H, s, =CH).Attempts to obtain a pure sample were unsuccessful.8-Dimethylaminou~ethyl-2-ethoxy-5~-hydroxy-3,4,4a, 5,6,7-hexahydro-4ap-methylnaphthalene Methiodide ( 14) .--Methyliodide (14 ml, ca.0.22 mol) was added to a stirred solutionof the crude amine (13) (25.0 g) in dry ethanol (100 ml) in anice-bath, and stirring was continued at room temperaturefor several h. A small quantity of dry ether was added,and the mixture was stirred for an additional few min. Theprecipitate was collected by filtration, washed with dryether several times, and then dried in vacuo to yield theammonium salt (14) as a hygroscopic powder (39 g), n1.p.200 "C (decomp.), vmax. (KBr) 3 400, 1 630, and 1 600w cm-l.Attempts to obtain an analytically pure sample were un-successful.naphthaZen-2(3H)-one (1) .-The best result for the reductivecleavage of the ammonium salt (14) was obtained as follows.A suspension of (14) (12 g) and Raney nickel (W-2; 100 g)in dry ethanol (250 ml) was saturated with hydrogen at roomtemperature, and the mixture was refluxed for 3 h withstirring.After filtration, the solution was concentrated invacuo leaving an oil, which was extracted with ether severaltimes. The combined extracts were evaporated to give thecrude hydroxy-enol ether (15) (5.2 g) as an oil, vnlSx. (film)3400, 1645, and 1620 cm-l, 6 0.93 (3 H, s,) 1.58 (3 H, s),3.40 (1 H, t, J 9, CHOH), and 5.23 (1 H, s, X H ) .The crude (15) was dissolved in 2N-sulphuric acid (15 inl)and ethanol (30 ml), and stirred a t room temperature for12 h. The mixture was concentrated in vacuo, and the resi-due was added to water and extracted with dichloromethane.Work-up gave an oil, which was filtered through a shortsilica gel column in ether. Removal of the solvent from thefiltrate left the hydroxy-octalone (1) (4.0 g) as an oil, b.p.135 "C (bath temp.) a t 0.2 mmHg, v,,,.(film) 3 400, 1 660,and I610 cm-l, 6 1.07 (3 H, d, J 6), 1.20 (3 H, s ) , 3.07 (1 H,s, OH), 3.45 (1 H, q, J 6, CHOH), and 5.81 (1 H, d, J 1.8).A sample for analysis was obtained by evaporative distill-ation in vacuo (Found: C, 74.0; H, 9.7. C1,H1,O, requiresC , 74.2; H, 9.3).5P-A cetoxy- 2-ethoxy- 8- formyl- 3,4,4a, 5,6,7-hexahydro-4ap-methylnafihthalene ( 16) .-To prepare the Vilsmeier reagent,phosphoryl chloride (2.58 ml, ca. 33.9 mmol) was addeddropwise to purified dimethylformamide (7.56 nil, ca. 109mmol) with stirring under nitrogen in an ice-bath.Afterthe exothermic reaction had subsided, a solution of thefreshly prepared enol ether (1 1) (6.32 g, 30 mmol) in dimethyl-formamide (20 ml) .was added dropwise. The mixture wasthen stirred a t room temperature for 4 h and poured into alarge excess of saturated aqueous sodium acetate in an ice-bath. The precipitate was collected by filtration, washedwith cold water, and dried in vacuo a t room temperature,giving the crude formyl enol ether (16) (6.50 g). Recrystid-Lisation from dichloromethane gave pale yellow needles, m.p.126-127 OC, vlllAX. (KBr) 1 728, 1 645, 1 605, and 1 572 cm-l,8 1.20 (3 H, s), 1.37 (3 H, t, J 7), 1.5-2.8 (8 H, m), 2.10 (3H,s,Ac),3.96(2H,q, J7),4.80(1H,m,AcOCH),6.37(lH,j,=CH), and 10.25 (1 H, s, CHO) (Found: C, 69.0; H, 7.7.21sH,20, requires C, 69.0; H, 8.0).5P-A cetoxy-4,4a, 5,6,7,8-hexaJzydro-4a~-rethyl-8-methylene-4,4a,5,6,7, 8-Hexahydro-5P-hydroxy-4a/iI, 8cc-dirnethyl-nuphthalen-2( 3H)-one ( 18) .--Sodium boroliydride (1 87 mg,3.62 mmol) was added to a stirred solution of the forniylenol ether (16) (3.3 g, 12 mniol) in ethanol (25 ml) in an ice-bath, and stirring was continued for a further 30 min.Themixture was allowed to warm to room temperature over 1 11,poured into ice-water, and extracted with dichloromethane.The combined extracts were washed with brine and dried.Removal of the solvent gave the alcohol (17) (3.22 g) as anoil, vnYJx. (film) 3 400, 1 730, 1 645, and 1 618 cm-l, 6 1.03 (3 H,s), 1.33 (3 H, s, J 7), 1.5-2.6 (9 H, m), 2.05 (3 H, s), 3.85 (2H, q, J 7),4.15 (2 H, q, CH,OH), 4.77br (1 H, t, AcOCH),and 5.54 (1 H, s, =CH).This alcohol was sensitive to heat and acid, and decomposedeven on a silica gel t.1.c.plate. Since the n.m.r. spectrum,however, indicated it to be almost homogeneous, the crudeproduct was used without purification in the next step.The alcohol (4.81 g, ca. 17.2 mmol) was dissolved inaqueous acetic acid (800/, ; 20 ml), and, after stirring a t roomtemperature for 3 h, the mixture was poured into ice-water.The product was extracted with ether, and the extract waswashed successively with water, aqueous sodium hydrogencarbonate, and brine, and dried. Evaporation left an oil,which crystallised. Recrystallisation from ether-lightpetroleum (10 : 1) gave the pure dienone (18) (3.45 g, 870/,) aspale yellow needles, m.p.58.5-59.5 OC, vInrtx-. (KBr) 1 750,1680, 1 6 3 0 ~ ) and 1608wcm-l, 6 1.20 (3H, s ) , 1.5-2.7 (8H,m), 2.07 (3H, s ) , 4.85 (1 H, dd, J 10.5 and 5.3, AcOCH), 5.05and 5.18 (each 1 H, s, C=CH,), and 6.02 (1 H, s, =CH) (Found:C, 71.4; H, 7.9. C14H1803 requires C, 71.8; H, 7.77;).5P-Acetoxy-3,4,4a,5,6,7-hexahydro-4au,8-dimethylna$h-thnlen-2( 1H)-one Ethylene Acetal (20) .-The dienone (18)(2.73 g, 11.7 mmol) was hydrogenated over 5 palladium-barium sulphate (560 mg) in ethyl acetate (35 ml) underatmospheric pressure. After absorption of 0.95 equiv. ofhydrogen, the catalyst was filtered off, and the filtrateevaporated in vacuo to give a viscous oil.Although theproduct was contaminated by a by-product, the main pro-duct was the 8P-methyloctalone (19), as shown by spectraldata: v,,,. (film) 1 735, 1 673, and 1 615 cm-l, 6 2.08 (3 H, s),4.70 (1 H, m, AcOCH), and 5.86 (ca. 1 H, s, =CH).A mixture of the above octalone, ethylene glycol (5 ml),toluene-$-sulphonic acid ( 15 mg) , and benzene was a,zeotropi-cally refluxed for 12 h (Dean-Stark water separator). Themixture was then diluted with water and extracted withether. The extract was successively washed with aqueoussodium hydrogen carbonate, water, and brine, and thendried. Removal of the solvent left a crystalline residue,which was recrystallised from ether-light petroleum (10 : 1)to give needles of (20) (2.49 g, 76y0), m.p. 116-117 "C, vmBx.(KRr) 1730 cm-l, 6 1.13 (3 H, s), 1.63 (3 H, s), 1.3-2.8 (10H, m), 2.05 (3 H, s), 3.96 (4 H, s, OCH,CH,O), and 4.85 (1 H,t, AcOCH) (Found: C, 68.8; H, 8.9.Cl,H,,04 requires C,Attenifitad Direct Epimerisation of the Octalone (19) .-Asolution of the 8P-methyloctalone (19) (198 mg), obtained onhydrogenation of the dienone (18) as described above, and acatalytic amount of toluene-$-sulphonic acid in benzene wasrefluxed under nitrogen overnight. Water was added, andthe product was extracted with ether. The extract waswashed, dried, and evaporated to leave an oil, which waspassed through a short silica gel column in ether. The eluategave an oil (185 mg) on concentration. Spectral data andg.1.c. showed that this was the acetoxy-octalone (21) con-taminated by an unidentified product (< 10).Attemptedseparation on a preparative scale was unsuccessful.68.5; H, 8.6)The Hydroxy-octale (1) from the Acetoxy-acetal (20) viathe A cetoxy-octalone (21) .-A solution of the acetoxy-acetal(20) (280 mg, 1 mmol) and a catalytic amount of toluene-p-sulphonic acid in acetone (30 ml) was refluxed overnight andthen poured into water. The product was extracted withether, and the extract was washed and dried. The residualoil obtained on evaporation was passed through a short silicagel column in ether, affording the acetoxy-octalone (21) (200mg) as an oil, vmax. (film) 1 730, 1 670, 1 610, 1 235, and 1 030cm-l, 6 1.10 ( 3 H, d, J 6), 1.30 (3 H, s ) , 2.05 (3 H, s ) , 4.70 ( 1H, m, AcOCH), and 5.85 (1 H, d, J 1.8, =CH).Potassium carbonate (120 mg) was added to a solution ofthe above acetoxy-octalone (146 mg, 0.62 mmol) in meth-anol (2 ml) , and the mixture was stirred at room temperaturefor 2 h under nitrogen.It was then diluted with water andextracted with ether. The extract was washed with waterand brine, and dried. Removal of the solvent left the hy-droxy-octalone (1) (86 mg, 61). The product was homo-geneous in t.1.c. and identified by i.r.J.C.S. Perkin IThe Hydroxy-octalone ( I) jrom the A cetoxy-acetal (20) viathe Hydroxy-ncetal (22) .-The acetoxy-acetal (20) (1 77 mg,0.63 mmol) dissolved in dry ether (2 ml was added drop-wise to a stirred suspension of lithium aluminium hydride(15 mg, 0.40 mmol) in the same solvent (1 ml) in an ice-bathunder nitrogen. After stirring for an additional 30 min a troom temperature, water was added and the mixture wasfiltered. The filtrate was washed and dried. Evaporationleft the hydroxy-acetal (22) (130 mg) as an oil, v,, (film)3 400 cm-l, 6 1.07 (3 H, s ) , 1.62 (3 H, s), 3.50 ( I H, m, CHOH),and 3.97 (4 H, s, OCH,CH,O).A solution of the above hydroxy-acetal (81 mg) in meth-anol (6 ml) containing iv-hydrochloric acid ( 1 ml) was re-fluxed for 2 h and then diluted with water. The productwas extracted with ether, washed, and then dried. Re-moval of the solvent gave the hydroxy-octalone ( 1) (54 mg,71) as an oil, homogeneous on t.1.c. and identified by i.r.and n.m.r. spectra.7/671 Received, 22nd April, 1977
机译:1977 2433合成4,4a-5,6,7,8-六氢-5P-羟基-4ap,8a-二甲基萘-2(3H)-酮,一种用于合成倍半萜烯的多功能中间体作者:Michiharu Kato, Hiroshi Kurihara, Hiroshi Kosugi, Masataka Watanabe, Shigeru Asuka.日本仙台 980 东北大学非水溶液化学研究所的 AkiraYoshikoshi 研究了从 5~-乙酰氧基-4,4a,5,6,7,8-六氢-4a~-甲基萘-2(3~)-酮 (1 0) 到 4,4a,5,6,7,8-六氢-5~-羟基-4ap.8a-二甲基萘-2(3~)-酮 (1) 的两种路线,这是合成某些类型倍半萜类化合物的关键中间体。方案 2 中所示的路线比方案 1 中的路线更可取(尽管前者略长),得到化合物 (1) 的总收率约为 (1 0) 的 48%。标题化合物(1)可能是合成某些代表性类型的倍半萜烯的多功能关键中间体。化合物(2a)可在烯烃双键的/I///t(4)QH(7)(8)(9)饱和后在酮功能处引入异丙基碳单元时获得。硒烷 (3) 或愈创木烷 (4) 倍半萜烯可分别从 (2a) 中衍生出来,在羟基转化为适当的离去基团(如磺酸盐)后去除羟基或溶剂分解重排 [如 (2b)]。事实上,一些愈创木脂。Kato, H. Kosugi, 和 A. Yoshikoshi, Chem. Comm.,1970, 185.M. Kato, H. Kosugi, and A. Yoshikoshi, Chem. Comm.,1970, 934.查看原文查看译文倍半萜类化合物 [Bulnesol (7)、Kessane (8) 和 Globu-Lo1 (9)] 已从化合物 (1) 合成。另一方面,外围 (2,3-) 或中心 (5,lO-) 键的裂变将导致 elemane (5) 或 germacrane (6) 倍半萜烯。之前,我们报道了羟基辛二元酮(1)的合成方法,如方案1所示,从乙酰氧基辛二元酮(lo)中合成,通过已知的pr~cedure从Wieland-Pvliescher酮中很容易获得。根据Burn's pr~cedure,~ i.e.by 与原甲酸三乙酯反应和催化量的甲苯-$-磺酸在二恶烷中(方案1)制备不稳定烯醇醚(11)。将粗烯醇醚依次用Vilsmeier试剂(Me,N-CHO-POCl,或Me,N*CHO-COCl,)、氢化锂、碘甲烷处理,得到铵盐(14)、亚胺盐(12)和茶胺(13)。化合物(12)-(14)中没有一个足够稳定,无法获得分析纯材料,尽管它们在光谱上是表征的。(14)中碳氮键的还原裂解是用雷尼镍进行的。然而,这种反应是反复无常的;在得到的烯醇醚(15)酸性水解后,在某些情况下,羟基辛酮(1)的收率很高(也是不稳定的),但在其他情况下会产生复杂的混合物,并且没有建立该反应的最佳条件。较差的重现性可能归因于反应对所用卡尼镍活性的高灵敏度,或基底中的杂质使雷尼镍失活,或两者兼而有之。(1)中新形成的甲基的赤道取向是从烯烃的耦合常数(1.8 Hz 6)引起的。 A. Marshall 和 J. A. Ruth, J . Org. Chem., 1974,39, 1971. * C. B. Boyce 和 J. S. Whitehurst, J . Chem. Soc., 1960, 2680.D. Burn, Tetrahedron, 1964, 20, 597.6 H. J .林戈尔德,J .Amer. Chem. Soc., 1963, 85, 16992434 J.C.S. Perkin IlH n.m.r. doublet.铵盐(14)的还原裂解得到的最佳结果是(10)中羟基辛二醇酮(1)的总收率约为60%.乙酸钠,并用硼氢化物还原产物得到相应的醇(17)。这种酸敏和热敏醇立即在室温下用醋酸处理以达到脱水效果,从而获得高收率的二烯酮(18)。然后通过对硫酸钯钡进行部分氢化反应获得八他龙(19)。正如预期的那样,(19)中的仲甲基是轴向的,(1 0) (11) CH=N Me2CL'由烯烃质子(12)n.m.r.信号的单线态性质证明。为了将轴向仲甲基表相化为赤道甲基,乙酰氧基辛二甲醌(19)在苯中用甲苯-@-磺酸处理;然而,该产品被一种难以去除的未识别的副产物污染 在改进的程序中,制备了结晶线缩醛 (20),并在 OEt O等重构后脱乙酰化。将所得乙酰氧基辛烷磺酸(2,1)单独用碳酸钾水解,得到(15)羟基辛烷酮(1)。通过用缩醛(ZO)的氢化铝锂还原和水解所得的羟基辛烷(22),最终产物也从(20)中获得类似的总收率。根据方案2,从(10)制备羟基辛二尖酮(1),总收率约为48%。AcO / / i i = Apt / /OEt +A- ( 1 ) parative scale.qJ+ @;mOEt CH2NMe2 CH2 N Me3I'(13) ( 1 4 )方案 1 i, (EtO),CH-TsOH;ii: Vilsineier试剂;iii,LiAlH,;iv: MeI;v: 倪雷尼;vi, H,SO,-H,O虽然上述通往(1)的路线比较简单,但(14)的还原解理障碍是无法规避的。然后,我们转向另一个 EXPERIMENTAL1.r.光谱,用 Hitachi EPI-32 分光光度计拍摄,并使用 JEOL C-60-HL 光谱仪 (60 MHz) 拍摄 n.m.r. 光谱,用于 CDC1 中的解决方案,除非另有说明。以四甲基硅烷为内标,偶联常数为Hz.5P-A,即鲸蜡氧基-2-乙氧基-3,4,4a,5,6,7-六氢-4ap-甲基-萘(1,1)。-将原甲酸乙酯(33ml,约0.2mol)和甲苯磺酸(600mg)加入到乙酰氧基辛他龙(10)(48g,0.216mol)吲二氧六环(200ml)的溶液中,并将混合物在室AcO温度下搅拌3小时。加入吡啶(15ml),将混合物倒入冰水中并用乙醚提取。提取物用水和盐水洗涤,Q-&LA@;Ap3 干燥。玻璃状去除物料(52.2 g)、vmaX、溶剂(薄膜)1左735、1 653、烯醇1醚620、1(ll)、245和1 030 cm-l、6(CCl、)1.01(3 H、s)、1.14(3 H、t、-1 7)、1.89AcO(12)//LOE tCHO CH20H(17) (16)(18) (19) (20)(22)(3 H, s)、3.70 (2 H, q, J 7)、4.5-4.8 (1 H, m, AcOCH) 和 4.97 (2 H, in, =CH)。虽然无法获得分析纯度的材料,但粗品的纯度足以用于下一步(如g.1.c.所示)。将8-二乙基氨基甲基-2-乙氧基-5P-Jzydroxy-3,4,4a,5,6,7-六氢-4ap-甲基萘(13).-二甲基甲酰胺(22g,0.3mol)在干燥的二氯甲胺(100ml)中的溶液加入到在冰浴中用相同溶剂(100ml)搅拌的光气*'(22g,0.22mol)溶液。Vilsmeier试剂析出为固体,并放出二氧化碳。将烯醇醚(11)(40 8.0.16mol)在相同溶剂(100ml)中的溶液滴加,立即得到红色溶液。搅拌3 h后,方案2 i,NaOAc-H,O;ii, NaBH,;iii, HOA~-H,O;iv、将溶剂在室温下真空除去至H,-Pd(BaS0,);v, (CH,OH),-TsOH;vi, 我,CO-TsOH;留下粘稠的深红色油。dryvii,K,CO,-MeOH中的油溶液;viii, LiAlH,;ix,将HC1-H,O四氢呋喃(500ml)滴加到氢化铝锂(8.0g)在氮气下在干醚(400ml)中的搅拌悬浮液中,并将混合物搅拌氯化物,见后文。 甲醚(16)是粗亚胺盐(12)的Ob水解,含水水,如高收率 * 在1977a的室温下获得更可重复的结果12 11.用湿醚分解过量的试剂,然后用少量水。检查得到粗叔胺(13)(32.9克)为淡黄色油,v,。(薄膜)3 400、1 643 和 1 615 cm-l,6 1.00 (3 H, s)、1.30 (3 H, t, J 7)、2.20 (6 H, s, NMe)、3.85(2 H, q, J 7) 和 5.62 (1 H, s, =CH)。8-二甲氨基u~乙基-2-乙氧基-5~-羟基-3,4,4a,5,6,7-六氢-4ap-甲基萘 甲基硫化物(14).--甲基碘化物(14ml,约0.22摩尔)加入到粗胺(13)(25.0克)在干燥乙醇(100毫升)中的搅拌溶液中,在室温下继续搅拌数小时。加入少量干乙醚,再搅拌混合物几分钟。过滤收集沉淀物,用干醚洗涤数次,然后真空干燥,得到铵盐(14),吸湿性粉末(39g),n1.p.200“C(分解),vmax。(KBr) 3 400、1 630 和 1 600w cm-l。试图获得分析纯样品的尝试不成功.naphthaZen-2(3H)-one (1) .-铵盐(14)还原裂解的最佳结果如下。将(14)(12g)和Raney镍(W-2;100g)在干燥乙醇(250ml)中的悬浮液在室温下用氢饱和,并将混合物回流3小时,搅拌。过滤后,将溶液浓缩,留下油,用乙醚多次萃取。将合并的提取物蒸发,得到粗羟基烯醇醚(15)(5.2g)作为油,vnlSx。(胶片)3400、1645 和 1620 cm-l、6 0.93 (3 H、s、)、1.58 (3 H、s)、3.40 (1 H、t、J 9、CHOH) 和 5.23 (1 H、s、X H)。将粗品(15)溶于2N-硫酸(15inl)和乙醇(30ml)中,并在室温下搅拌12小时。将混合物真空浓缩,将残留物加入水中并用二氯甲烷萃取。检查得到一种油,通过乙醚中的短硅胶柱过滤。从滤液中除去溶剂,留下羟基辛他酮(1)(4.0g)为油,b.p.135“C(浴温)a t 0.2mmHg,v,,,.(胶片) 3 400, 1 660 和 I610 cm-l, 6 1.07 (3 H, d, J 6), 1.20 (3 H, s ) , 3.07 (1 H,s, OH), 3.45 (1 H, q, J 6, CHOH) 和 5.81 (1 H, d, J 1.8)。通过真空蒸发蒸馏获得用于分析的样品(发现:C,74.0;H,9.7。C1,H1,O,要求C,74.2;H, 9.3%).5P-A 鲸蜡氧基-2-乙氧基-8-甲酰基-3,4,4a,5,6,7-六氢-4ap-甲基萘(16).-为了制备Vilsmeier试剂,将磷酰氯(2.58ml,约33.9mmol)滴加到纯化的二甲基甲酰胺(7.56 nil,约109mmol)中,在氮气下在冰浴中搅拌。放热反应消退后,滴加新制备的烯醇醚(1,1)(6.32g,30mmol)在二甲基甲酰胺(20ml)中的溶液。然后将混合物在室温下搅拌4小时,并在冰浴中倒入大量过量的饱和醋酸钠水溶液中。过滤收集沉淀,用冷水洗涤,室温真空干燥,得到粗甲酰烯醇醚(16)(6.50克)。二氯甲烷的Recrystid-Lisation得到淡黄色针,m.p.126-127 OC,vlllAX。(KBr) 1 728、1 645、1 605 和 1 572 cm-l,8 1.20 (3 H, s), 1.37 (3 H, t, J 7), 1.5-2.8 (8 H, m), 2.10 (3H,s,Ac)、3.96(2H,q, J7)、4.80(1H,m,AcOCH)、6.37(lH,j,=CH) 和 10.25 (1 H, s, CHO) (发现: C, 69.0;H,7.7.21sH,20,需要C,69.0;H, 8.0%).5P-A 鲸蜡氧基-4,4a, 5,6,7,8-六Jzydro-4a~-rethyl-8-亚甲基-4,4a,5,6,7, 8-六氢-5P-羟基-4a/iI, 8cc-dirnethyl-nuphthalen-2( 3H)-one ( 18) .--硼酰胺钠 (1 87 mg,3.将62mmol)加入到乙醇(25ml)中的甲苯酚醚(16)(3.3g,12mniol)在冰浴中搅拌30分钟。将混合物加热至室温超过1 11,倒入冰水中,用二氯甲烷萃取。合并后的提取物用盐水洗涤并干燥。除去溶剂,得到醇(17)(3.22克)作为油,vnYJx。(薄膜)3 400、1 730、1 645 和 1 618 cm-l、6 1.03 (3 H,s)、1.33 (3 H, s, J 7)、1.5-2.6 (9 H, m)、2.05 (3 H, s)、3.85 (2H, q, J 7)、4.15 (2 H, q, CH,OH)、4.77br (1 H, t, AcOCH) 和 5.54 (1 H, s, =CH)。这种醇对热和酸敏感,甚至在硅胶t.1.c.板上也能分解。然而,由于n.m.r.谱图表明它几乎是均匀的,因此在下一步中不进行纯化就使用了粗品。将醇(4.81克,约17.2毫摩尔)溶解在醋酸水溶液(800/,;20毫升)中,在室温下搅拌3小时后,将混合物倒入冰水中。用乙醚提取本品,先后用水、碳酸氢钠水溶液、盐水洗涤提取物,干燥。蒸发留下油,结晶。用醚轻石油(10 : 1)重结晶得到纯二烯酮(18)(3.45 g,870/,)淡黄色针状物,熔点58.5-59.5 OC,vInrtx-。(KBr) 1 750,1680, 1 6 3 0 ~ ) 和 1608wcm-l, 6 1.20 (3H, s ) , 1.5-2.7 (8H,m), 2.07 (3H, s ) , 4.85 (1 H, dd, J 10.5 and 5.3, AcOCH), 5.05 和 5.18 (各 1 H, s, C=CH,) 和 6.02 (1 H, s, =CH) (Found:C, 71.4;H,7.9。C14H1803要求C,71.8;H,7.77;)。5P-乙酰氧基-3,4,4a,5,6,7-六氢-4au,8-二甲基Na$H-Thnlen-2(1H)-酮乙烯缩醛(20).-二烯酮(18)(2.73g,11.7mmol)在乙酸乙酯(35ml)的大气压下氢化超过5%硫酸钯钡(560mg)。吸收0.95当量氢气后,滤去催化剂,滤液真空蒸发,得到粘稠油。虽然产物被副产物污染,但主要产物是 8P-甲基辛醌 (19),如光谱数据所示:v,,,.(胶片)1 735、1 673 和 1 615 cm-l、6 2.08 (3 H, s)、4.70 (1 H, m, AcOCH) 和 5.86 (ca. 1 H, s, =CH)。将上述辛酮、乙二醇(5 ml)、甲苯-$-磺酸(15 mg)和苯的混合物进行 a,沸向回流 12 h(Dean-Stark 水分离器)。然后用水稀释混合物并用乙醚萃取。提取液先后用碳酸氢钠水溶液、水、盐水洗涤,然后干燥。除去溶剂留下结晶残留物,将其从醚轻石油(10:1)中重结晶,得到(20)(2.49 g,76y0),熔点116-117“C,vmBx的针。(KRr) 1730 cm-l, 6 1.13 (3 H, s), 1.63 (3 H, s), 1.3-2.8 (10H, m), 2.05 (3 H, s), 3.96 (4 H, s, OCH,CH,O) 和 4.85 (1 H,t, AcOCH) (发现: C, 68.8;H, 8.9.Cl,H,,04 需要 C,Attenifitad Octalone 的直接差向异构化 (19) .-将上述二烯酮(18)氢化得到的8P-甲基辛酮(198mg)溶液,并在氮气下回流过夜的苯中的甲苯-$-磺酸的化学分解量。加入水,用乙醚萃取产物。将提取物洗涤、干燥并蒸发以留下油,油通过乙醚中的短硅胶柱。洗脱液在浓度上给予油(185mg)。光谱数据和g.1.c.表明这是被一种不明产物(< 10%)污染的乙酰氧基辛他酮(21)。在制备规模上尝试分离未成功.68.5;H, 8.6%)乙酰氧基-缩醛(20)通过乙酰氧基-缩醛(20)(280 mg,1 mmol)的A-乙酰氧基-辛醛(21).-A溶液和催化量的甲苯-对磺酸在丙酮(30 ml)中回流过夜,然后倒入水中。用乙醚提取产品,洗涤并干燥提取物。蒸发时获得的残油通过乙醚中的短硅胶柱,得到乙酰氧基辛二元酮(21)(200mg)作为油,vmax。(胶片) 1 730、1 670、1 610、1 235 和 1 030cm-l、6 1.10 ( 3 H, d, J 6)、1.30 (3 H, s ) 、 2.05 (3 H, s ) 、 4.70 ( 1H, m, AcOCH) 和 5.85 ( 1 H, d, J 1.8, =CH)。将碳酸钾(120mg)加入到上述乙酰氧基辛他龙(146mg,0.62mmol)的甲基醇(2ml)溶液中,并将混合物在室温下在氮气下搅拌2小时。然后用水稀释并用乙醚萃取。提取物用水和盐水洗涤,并干燥。除去溶剂后,留下羟基羟基辛他醌(1)(86mg,61%)。产物在t.1.c中是均质的。并由 I.R.J.C.S. 识别Perkin IThe 羟基-辛他醛 ( I) jrom A 鲸蜡氧基-缩醛 (20) 通过 Hydroxy-ncetal (22) .-乙酰氧基-缩醛 (20) (1 77 mg,0.63 mmol) 溶于干醚 (2 ml) 中,在相同的溶剂 (1 ml) 中,在氮气下的冰浴中逐滴加入到氢化铝锂 (15 mg, 0.40 mmol) 的搅拌悬浮液中。在室温下再搅拌30分钟后,加入水并过滤混合物。滤液洗涤并干燥。蒸发后羟基缩醛(22)(130mg)为油,v,,(薄膜)3 400 cm-l,6 1.07(3 H,s),1.62(3 H,s),3.50(I H,m,CHOH)和3.97(4 H,s,OCH,CH,O)。将上述羟基缩醛(81mg)在含有iv-盐酸(1ml)的甲基-醇(6ml)中的溶液重新通量2小时,然后用水稀释。将产品用乙醚提取,洗涤,然后干燥。重新去除溶剂得到羟基辛他醌(1)(54mg,71%)作为油,在t.1.c上均匀。并通过 IR 和 N.M.R. 光谱识别。[7/671 收稿日期: 1977-04-22

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号