首页> 外文期刊>American Journal of Pathology: Official Publication of the American Association of Pathologists >Reduced Kruppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy
【24h】

Reduced Kruppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy

机译:Reduced Kruppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy

获取原文
获取原文并翻译 | 示例
       

摘要

Loss of functional nephrons induces compensatory glomerular hyperfiltration and hypertrophy, leading to the progression of chronic kidney disease. Kruppel-like factor 2 (KLF2), a shear-stress inducible transcription factor, confers protection against endothelial injury. Because glomerular hyperfiltration is associated with shear stress, we hypothesized that KLF2 may be an important factor in the compensatory response to unilateral nephrectomy (UNX). To test this hypothesis, endothelial cell specific Klf2 heterozygous knockout mice (KO) and their wild-type Littermate control (WT) underwent either UNX or sham-operation. WT-UNX mice developed compensatory renal hypertrophy as expected, whereas K0-UNX mice did not. K0-UNX mice exhibited higher blood pressure, reduced glomerular filtration rate, and significant increase in proteinuria and glomerulosclerosis compared to WT-UNX. Expression of endothelial nitric oxide synthase (official name Nos3), a known transcriptional target gene of KLF2, was significantly reduced and dysregulation of other endothelial genes was also observed in the glomeruli of K0-UNX when compared to WT-UNX and sham-operated mice. Furthermore, both podocyte number and expression of podocyte markers were also significantly reduced in K0-UNX glomeruli, indicating a potential cross talk between glomerular endothelial cells and podocytes. Finally, decreased renal expression of KLF2 in nephrectomy patients was associated with the progression of kidney disease. Taken together, our data demonstrate a protective role of KLF2 against glomerular endothelial cell injury and progression of chronic kidney disease in the model of compensatory renal hypertrophy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号