...
首页> 外文期刊>Journal of Quantitative Spectroscopy & Radiative Transfer >An efficient method for computing atmospheric radiances in clear-sky and cloudy conditions
【24h】

An efficient method for computing atmospheric radiances in clear-sky and cloudy conditions

机译:An efficient method for computing atmospheric radiances in clear-sky and cloudy conditions

获取原文
获取原文并翻译 | 示例

摘要

A computationally efficient method is developed to simulate the radiances in a scattering and absorbing atmosphere along an arbitrary path in the spectral region ranging from visible to far-infrared with a spectral resolution of 1cm~(-1). For a given spectral region, the method is based on fitting radiances pre-calculated from the discrete ordinate radiative transfer (DISORT) at several wavenumbers. Radiances at other wavenumbers are interpolated based on the pre-computed total absorption and scattering optical thicknesses and the surface albedo. The computational efficiency and accuracy of the method are tested in comparison with rigorous simulations for various scenarios under the same conditions. For both clear-sky and cloud atmospheres, the present method is at least 140 times faster than the direct application of DISORT. Across the spectral range, the standard relative differences between the new method and the DISORT are less than 2 for clear-sky conditions. Root-mean-square (RMS) differences of the top of the atmosphere (TOA) brightness temperatures between the new method and DISORT, for atmospheric infrared sounder (AIRS) channels over clear-sky, ice cloudy and water cloudy skies, are within the noise equivalent differential temperature (NEDT) of the AIRS sensor. The fast method is also applied to simulations of the spectral downwelling radiance measured by the Fourier transform infrared (FTIR) interferometer, and to the simulations of the AIRS upwelling radiances under clear-sky and cloudy conditions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号