...
首页> 外文期刊>Pesticide science >The kinetics of insecticide action. Part IV:the in‐vivo distribution of pyrethroid insecticides during insect poisoning
【24h】

The kinetics of insecticide action. Part IV:the in‐vivo distribution of pyrethroid insecticides during insect poisoning

机译:杀虫剂作用的动力学。第四部分:拟除虫菊酯类杀虫剂在昆虫中毒过程中的体内分布

获取原文

摘要

AbstractThe distribution of pyrethroids in insects has been studied using a combination of mathematical modelling and experimental observation. This approach has resulted in the formulation of a physiological model of the pharmaco‐kinetics of cypermethrin applied topically to larvae of Spodoptera littoralis. Development of this model from simpler two‐ and three‐compartment models is described. Simple models, whilst capable of complex behaviour, consider only the average rates and magnitudes of pharmaco‐kinetic processes over whole animals, and cannot account for differences in concentration of insecticide between individual tissues. This can be achieved by using physiological models, but these require more experimental information for their validation. Moreover, unless simplifying assumptions are made, analytical solutions are not feasible for the large number of equations necessary to define such models.The modelling studies prompted an investigation of (1) in‐vivo binding of insecticide to insect tissues, (2) the sizes of body compartments, and (3) the factors which affect the distribution of toxicant between these compartments. Binding has a marked effect on pharmacokinetic profiles and may result in oscillatory behaviour. During poisoning, the total bound cypermethrin increases proportionally to the cube root of the elapsed time. This results in a rapid rate of increase over early elapsed times (<3h) which slows to approach a more linear form thereafter. Average sizes for the body compartments of larvae of Spodoptera littoralis Boisd, and the steady‐state distribution of cypermethrin in these compartments are described. Although the haemolymph, which acts as the main distributive phase during poisoning, forms the largest compartment by volume, it has a low affinity for cypermethrin and distribution reaches steady state within 5 min after topical application. The nerve cord (the target tissue), which is the smallest compartment, has the highest steady‐state concentration of cypermethrin. The distribution of cypermethrin in larval tissues is related to the ratios of tissue dry matter to
机译:摘要采用数学建模和实验观察相结合的方法研究了拟除虫菊酯在昆虫中的分布。这种方法导致了氯氰菊酯药代动力学的生理模型的制定,该模型局部应用于草地贪夜蛾的幼虫。描述了该模型从更简单的两室和三室模型的发展。简单的模型虽然能够进行复杂的行为,但只考虑了整个动物的药代动力学过程的平均速率和大小,而不能解释单个组织之间杀虫剂浓度的差异。这可以通过使用生理模型来实现,但这些模型需要更多的实验信息来验证它们。此外,除非做出简化的假设,否则对于定义此类模型所需的大量方程,解析解是不可行的。建模研究促使人们调查(1)杀虫剂与昆虫组织的体内结合,(2)体室的大小,以及(3)影响这些室之间有毒物质分布的因素。结合对药代动力学特征有显着影响,并可能导致振荡行为。在中毒过程中,总结合的氯氰菊酯与经过时间的立方根成比例地增加。这导致在早期经过的时间(<3 小时)内快速增加,此后减慢以接近更线性的形式。描述了草地贪夜蛾幼虫体室的平均大小,以及氯氰菊酯在这些室中的稳态分布。虽然血淋巴在中毒过程中作为主要分布期,按体积构成最大的隔室,但它对氯氰菊酯的亲和力较低,并且在局部应用后5分钟内分布达到稳定状态。神经索(靶组织)是最小的隔室,具有最高的氯氰菊酯稳态浓度。氯氰菊酯在幼虫组织中的分布与组织干物质与组织干物质的比例有关

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号