...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Influence of Complex-Formation Equilibria on the Temporal Persistence of Cysteinate-Functionalized CdSe Nanocrystals in Water
【24h】

Influence of Complex-Formation Equilibria on the Temporal Persistence of Cysteinate-Functionalized CdSe Nanocrystals in Water

机译:Influence of Complex-Formation Equilibria on the Temporal Persistence of Cysteinate-Functionalized CdSe Nanocrystals in Water

获取原文
获取原文并翻译 | 示例

摘要

We have characterized the persistence and degradation of magic-sized CdSe nanocrystals (NCs) after their removal from the original reaction mixture and dispersion into basic aqueous solutions. Such studies are important given the myriad potential applications of semiconductor NCs and ongoing efforts to characterize the properties and reactivity of monodisperse suspensions of intact NCs. Correlated challenges are to elucidate the mechanisms by which NCs degrade and to establish conditions under which NCs persist. Our CdSe NCs degraded after dilution into aqueous NaOH, resulting in red-shifted excitonic absorption bands and eventual flocculation. Dilution of NCs into basic aqueous solutions of cysteinate resulted in degradation via a different mechanism with an absence of flocculation; kinetics varied with concentration of cysteinate. The chemical fate of NCs after dilution into basic aqueous solutions containing both Cd ~(2+) and cysteinate varied with the cysteinate-to-Cd ~(2+) molar ratio, which determined the relative solute mole fractions of various Cd ~(2+)—cysteinate complexes. CdSe NCs persisted on long time scales only when dispersed in solutions containing Cd(cysteinate)3~(4-). We present equilibria to account for the observed spectral changes after dilution of CdSe into various basic media. Cadmium(ll)~cysteinate complex-formation equilibria influenced the temporal persistence of the NCs; the pathway through which CdSe NCs degraded depended on the concentration of free, uncoordinated cysteinate. Our findings indicate that solution-phase chemistry can determine whether NCs remain intact upon removal from their original reaction mixtures.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号