首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis of methano-bridged tetradehydrodiaza22annulene and related compounds
【24h】

Synthesis of methano-bridged tetradehydrodiaza22annulene and related compounds

机译:甲醇桥接四氢二氮杂22环烯及相关化合物的合成

获取原文
获取外文期刊封面目录资料

摘要

975J. CHEM. soc. PERKIN TRANS. i 1993 Synthesis of Met hano- br idged Tet rade hyd rod iaza221ann u lene and Related Compounds Hiroyuki Higuchi,a Hiroyuki Yamamoto,8 J6ro Ojima +A and Gaku Yamamoto *r6 a Department of Chemistry, Faculty of Science, To yama University, Gofuku, Toyama 930, Japan Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo I 13,Japan Synthesis of 9,22-diethoxy-l3,18-dimethyl-l4,15.16,17-tetradehydro-2,7-methano-l,8-diaza22-annulene (9,22-diethoxy-l3,18-dimethyl-2,7-methano-l,8-diazacyclodocosa-2,4,6,8,lO,12,18,2O,-22-nonaene-14.16-diyne), is described. Examination of 'H NMR and electronic spectra indicates that the diaza22annulene shows no ring current effect but does show polyolefinic character despite the potential diatropic 22n-electron system.Attempts to prepare the higher analogues, diaza 24 -and -26annulenes are also described. In previous papers, we have reported the synthesis of a series heteroannulene with two heteroatoms so far obtained in which of monocyclic tetradehydroaza-annulenes2, higher vinylogues both heteroatoms replace carbon atoms of the annulene of pyridine, starting from a series of the tetradehydro-perimeter.'j annulenones 1,' and showed the alternation of the tropic nature between 4n + 21x- and 4n~-electron systems in compounds 2 with 14-to 22-membered rings.2 Results and Discussion The systematic synthesis of aza-annulenes 2 starting from Synthesis.-Treatment of the tetradehydromethanoC20)an-the annulenones 1 involved essentially (i) preparation of the nulenedione 3 with an excess of hydroxylamine hydrochloride corresponding oximes, (ii) Beckmann rearrangements to lac- in methanol, tetrahydrofuran (THF) and water gave the di- tams, and finally (iii) 0-alkylation of the lactams with oxime 6 in 88 yield. The appearance of only one singlet for the Meerwein's reagent.This successful sequence of reactions led hydroxy protons seemed to suggest that compound 6 existed as us to expect that starting from appropriate annulenediones, a single isomer, but the configuration was not clear at this stage. diaza-annulenes, the higher analogues of pyrimidine or pyrazine Treatment of compound 6 with phosphorus pentachloride in might be prepared. We have now realized this expectation in tetrahydrofuran (THF) caused double Beckmann rearrange- practice. Since the methano-bridge had been found to ments to give the dilactam 7 (28).The structure of compound contribute to keeping the annulene perimeter planar in our 7 was assigned as indicated on the basis of its 'H NMR studies upon methano-bridged tetradehydroannulenes and spectrum (see below). Thus both amide nitrogens were directly thia-ann~lenes,~the methano-bridged annulenediones 3-5, of bound to the cycloheptatriene ring. Since the Beckmann which preparations were reported only very recently, as well as rearrangement usually proceeds so that the substituent anti to their higher analogues,' appeared to be the desirable starting the hydroxy group moves from C to N,7the OH configurations materials for synthesis of diaza-annulenes.The methano- of the dioxime 6 should be those indicated. bridged diazaC22)annulene 8 thus obtained is the largest The dioxime 9 (51), obtained from the tetradehydro- 0 OEt 1 2 /TI =1-3 m =1-3 n =1-3 n =1-3 0 20-3:m = n = 0 24-4: rn = n = 1 26-5: m = 1, n = 2 976 J. CHEM. SOC. PERKIN TRANS. I 1993 .Me 3 N Me OH 6 +EmMe OEt 8a methanoC24lannulenedione 4, consisted of an inseparable mixture of stereoisomers, as judged from the appearance of three hydroxy proton signals (see Experimental section). Beckmann rearrangement of the mixture gave the dilactam 10 (67) as a sole isolable product. The 'H NMR spectrum of compound 10 indicated that it possessed the geometry shown.Therefore the unsymmetrical structure 9 could be assigned to the main isomer of the precursor dioxime. Similarly, the dioxime 11 (77), which was obtained from the tetradehydromethanoC261 annulenedione 5,' was converted into the dilactam 12 in poor yield (18). The 'H NMR spectrum of 12 showed that 12 consisted of only one regio- isomer shown by the formula, in which the two amide moieties again had opposite orientations. The reaction of the dilactam 7 with Meerwein's reagent was slow and did not proceed to completion. The dilactam 7 reacted with a large excess of triethyloxonium tetrafluoroborate in dichloromethane for 3 days at room temperature to afford the desired tetradehydromethanodiaza22annulene 8 in a poor yield (9)with a large recovery of the substrate 7.The tetradehydromethanodiaza22annulene 8 thus ob-tained is relatively stable as a solid and in solution. The conversions of both dilactams 10 and 12 to the corresponding diazaC26)- and -28 Jannulenes, respectively, as before were attempted under several different conditions by changing the reaction temperature and reactime time. However, the reactions of compounds 10 and 12 with a large excess of triethyloxonium tetrafluoroborate did not proceed and resulted in decomposition of the substrates due to instability of both compounds 10 and 12 under the reaction conditions. It is noted that recrystallisation of the dioxime 6 and the dilactam 7 from acetone and of the dilactam 12 from methanol gave crystals containing solvent of crystallisation in a molar ratio of 1:1, respectively, as evidenced from 'H NMR spectro- scopy and elemental analyses (see Experimental section).'H and 13CNMR Spectra.-Chemical shift assignments (see Experimental section) of the olefinic protons in dilactams 7, 10 and 12 were made as follows. Broad doublet signals were assigned to the protons adjacent to a methyl group, because the broadening was due to allylic coupling to the methyl protons as 7 p'-Me OEt 8 revealed by decoupling experiments, while sharp doublets were assigned to the protons adjacent to a carbonyl group or the cycloheptatriene ring. Protons adjacent to nitrogens were easily assigned because these protons showed coupling with the NH protons.Then the proton sequence along the polyene moiety was determined by successive decoupling experiments. All the -CH=CH- moieties showed Jvic 15-16 Hz indicating an E configuration while =CH-CH= moieties had Jvic10-1 1 Hz indicating the s-trans conformation.8 Irradiation of the methyl signals caused an intensity enhancement (NOE) of the doublet signals due to the respective adjacent olefinic protons HA (and HA'), clearly indicating that HA (and HA') is located outside of the macrocyclic ring. The geometries of compounds 7,lOand 12 were therefore determined as shown by the structural formula. The 500 MHz 'H NMR spectrum of the tetradehydro- methanodiaza22annulene 8 taken in CDCl, at 26 "C is shown in Fig.l(a). Owing to the potential 22n-aromatic system of compound 8, diatropicity was expected, which would afford the signals of the inner protons (HBand the methano bridge protons) at a higher field than their normal positions and of the outer protons at a lower field. Contrary to this expectation, the HB signal appears at the lowest field, although this may partly be ascribed to the deshielding anisotropy effect of the diyne moiety. All other protons have normal chemical shifts. These features suggest that compound 8 is atropic in nature. This is in sharp contrast with the behaviour of the closely related carbocyclic analogue 13, which showed strong diatropicity with the signals of the methano bridge protons at 6 0.91 and of the methyl groups at 6 2.36.Another remarkable feature is that the two protons of the methano bridge are diastereotopic affording an AB quartet signal and the methylene protons of the ethoxy groups are also diastereotopic. This indicates that the macrocyclic ring is non- planar and the flipping of the methano bridge is slow on the NMR time scale at 26 "C. The degree of dia- or para-tropicity of a heteroannulene has been found to be much smaller than that of the corresponding carbocyclic annulene,6 and we found that the monoazaC22lan- nulene 14 showed diatropicity, though small, with the signals of the methyl groups adjacent to the diyne moiety at 6 2.10 and J. CHEM. SOC. PERKIN TRANS. I 1993 (b) OCH2CH3 I HCH2 OCH2 I II1 I""l".~ I""""' I' .'I.' 'I'..'i' I .''.1""~" 8 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.0 1.5 Fig. 1500 MHz 'H NMR spectrum of compound 8 at 26 OC: (a) in CDCI, (b)in CDC1,-CF,CO,D ( -2 :1). The peak with xis due to CHCI, OH HO-N Me 9 OH / 11 2.15.' Judging from the theoretical prediction that pyrimidine or pyrazine have similar resonance energies and thus similar tropicity to pyridine,' the present diaza compound 8 should show diatropicity to a similar extent as the monoaza compound 14.Therefore, we consider that the atropic nature of compound 8 is not due to the introduction of two nitrogen atoms into the diatropic carbocyclic 22annulene system 13,but is attribut- able to the nonplanarity of the molecular skeleton.In compound 8, the ethoxy groups must be located outside the macrocycle. Therefore compound 8 cannot assume a skeletal conformation similar to that of compound 13,which would be more planar and thus more stable than the conformation which 8 is forced to adopt. We have also studied 'H NMR spectra of compound 8 in acidic media in order to obtain information on the effect of protonation on the geometry and tropicity of this compound. Addition of one-ninth volume of CF,CO,D to the CDCl, 10 12 solution of compound 8 caused a dramatic change in the 'H NMR spectrum. Further addition of CF,CO,D showed no further change in the spectrum, suggesting that compound 8 had been completely deuteriated, yielding the dicationic species 8a. The 'H NMR spectrum of 8 in CDCl,-CF,CO,D (ca.2: 1) is shown in Fig. I(b).The signals of all the protons except for those of the bridge methylene protons shift downfield. These results might be attributable to diminished n-electron density, arising from withdrawal of electrons by deuteriation and not to any change in tropicity, although the reason of the upfield shift of the bridged methylene protons is not clear. The 13CNMR spectrum of 8 in CDC1,-CF,CO,D (ca. 2: 1) shows an intriguing behaviour. Upon changing the solvent from CDCl, to CDC13-CF3C02D, C-3/C-6, C-9/C-22 and C-1 I/ C-20 show large downfield shifts (14.5, 13.3 and 11.6 ppm, respectively), while C-lO/C-21 shifts strongly upfield (8.4ppm) together with a small upfield shift of C-2/C-7 (3.9 ppm).This 978 J. CHEM. SOC. PERKIN TRANS. I 1993 4.3 4.2 4.1 6 3.3 3.2 3.1 3.0 2.9 2.8 6 Fig. 2 Temperature-dependent 'H NMR spectra of compound 8 in CDCI,: (a)the methano bridge protons and (b)OCH, protons. On the left are the observed spectra at various temperatures ("C) and on the right are the calculated spectra with the best-fit rate constants (s-') clearly indicates that the electron density alternation occurs Flipping of the Methylene Bridge in Compound 8.411order along the macrocyclic periphery. A similar behaviour has been to obtain information on the energy barrier to the flipping of observed previously in tetradehydror 1 Slannulenone deriva- the methano-bridge, a variable-temperature 'H NMR study tives." The OCH, carbon shows a large downfield shift (1 1.2 was performed for the diazaC22lannulene 8 in CDCl, in the ppm), probably due to charge density distribution on the oxy- temperature range 26-60 "C.These spectra are illustrated in gen atoms. The methano bridge carbon shows a large upfield Fig. 2 together with the calculated spectra using the DNMR3 shift (10.7 ppm), although the origin of this shift is not clear. program.'' Rate constants were determined at three tempera- The bridge methyiene protons of compound 8 in CDC1,- tures of 43, 51 and 60 "C so that both the methano bridge and CF,CO,D at 26 "C appeared as a singlet and the methylene OCH, signals gave the same best-fit value at each temperature. protons of the ethoxy groups were also magnetically equivalent, The free energy of activation for the flipping of the methano suggesting that the flipping of the methano bridge was fast on bridge is calculated to be 17.2 kcal mol-',* while the enthalpy the NMR timescale in this medium.This may be because the and entropy of activation are unreliable because of the narrow molecular skeleton in the species 8a is more flexible than that of the neutral 8 presumably due to the increased single bond character of the original C=N bonds. * 1 cal = 4.184 J. J. CHEM.SOC. PERKIN TRANS. I 1993 300 400 500 600 1Inm Fig. 3 Electronic absorption spectra of C22lannulene 13 (----), azaC22lannulene 14 (- .-. -) and diazaC22lannulene 8 (-) in THF Me 13 range of temperature and are not presented.The methylene bridge signal of the closely related carbocyclic 22 Jannulene 13 remained singlet down to -60 0C,36and the activation energy for this process was estimated to be less than 12 kcal mol-'. Thus, this fact might support the interpretation, described above, that the molecular skeleton of the diazaC22lannulene 8 is forced to be non-planar due to the presence of the ethoxy groups. Elelectronic Spectra.-The electronic absorption spectrum, measured in THF, of the tetradehydromethanodiaza22-annulene 8 is illustrated in Fig. 3, together with those of the closely related compounds, the tetradehydrorneth-ano22annulene 133b and the tetradehydroazaC22 Jannulene 14" both of which have been confirmed to show diatro- pici ty .It is noted that these spectra are similar in shape to each other and show the three distinct absorption bands characteristic of (4n + 2)x-electron systems, as has been recognized in the spectra of carbocyclic (4n + 2)x-annulenes and dehydro-annulenes. 'This feature might be reasonably attributed to the 14 fact that all of these compounds have 22x-electron perimeters. However, as is seen clearly from Fig. 3, all the bands of the diazaC22lannulene 8 are in shorter wavelengths by ca. 80 nm than the corresponding bands of the 22annulene 13 and the aza22annuiene 14, indicating that 8 is atropic, while 13 and 14 are diatropic, which is consistent with the conclusion from 'H NMR spectroscopy. The series of the lactams 15, the precursors of the aza- annulenes 2, have been reported to show tropicity.2' In accordance with this result, their main (strongest) absorption maxima showed the same alternation in the wavelengths of the main absorption maxima between (4n + 2) and (4n)x-systems, as has already been demonstrated for monocyclic annulenes and dehydroann~1enes.l~ Here we can compare the main absorption maxima between the dilactams 10 (26J-: 290 nm) and 12 (28-:338 nm).Thus, it is evident that the main absorption maximum of (4n + 2)x-dilactarn 10 is not at a longer wavelength than that of (4n)x-dilactam 12, indicating that both of the dilactams 10 and 12 as well as the dilactam 7 are atropic, as revealed by 'H NMR spectroscopy (see Experimental section). 980 J.CHEM. SOC. PERKIN TRANS. 1 1993 Me Me 15 m =1-3 n =1-3 Experimental M.p.s were determined on a hot-stage apparatus and are uncorrected. 1R spectra were taken with a Hitachi 260-50 spectrophotometer as KBr discs and were calibrated against polystyrene; only significant maxima are described. Electronic spectra were measured in tetrahydrofuran (THF) solution and run with a Hitachi 220A spectrophotometer. Mass spectra were recorded with a JEOL JMS-D 300 spectrometer operating at 75 eV using a direct-inlet system. 'H NMR spectra at ambient temperature were recorded with a JEOL FX-90Q (90 MHz), GX-270 (270 MHz) or a Bruker AM-500 (500 MHz) spectro- meter at 89.60,270.16 or 500.14 MHz, respectively, SiMe, being used as an internal standard.J-Values are given in Hz. Assignments were clarified by the use of decoupling experiments where necessary. Variable-temperature 'H NMR measure-ments were made on an AM-500 spectrometer and the temperatures were calibrated with an ethylene glycol sample. I3C NMR spectra were recorded with a Bruker AM-500 spectrometer at 125.76 MHz, SiMe, being used as an internal standard. Chemical shifts of the protonated carbons were unambiguously assigned on the C-H COSY spectrum. Merck alumina (activity 11-111) or Daiso Gel 1001 W was used for column chromatography. Progress of all reactions was followed by TLC using Merck pre-coated silica gel. Dichloromethane was distilled over calcium hydride before use. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under nitrogen atmosphere before use.Organic extracts with dichloromethane or chloroform were washed with saturated aq. sodium chloride and dried over anhydrous calcium chloride prior to removal of the solvent. Solvents were evaporated under water-pump pressure. Me' Me 13,18-Dimethyl-2,7-methano-1,8-diazacyclodocosa-2,4,6,10,-12,18,20-heptaene-l4,16-diyne-9,22-dione7.-A solution of phosphorus pentachloride (600 mg, 2.88 mmol) in dry THF (32 cm3) was added dropwise to a stirred solution of dioxime 6 (109 mg, 0.31 mmol) in dry THF (20 cm3) during 30 min at -12 "C, and stirring was continued for 5 h at room tempera- ture. Then the solution was poured into aq. sodium hydrogen carbonate and the mixture was extracted with chloroform.The combined extracts were washed with brine and dried. The residue obtained after removal of the solvent was chromato- graphed on alumina (3.2 x 6 cm). The fractions eluted with 10 acetone in benzene afforded the dilactam 7 (39 mg, 28) as red cubes, m.p. 264-265 "C (decomp.) (from hexane-acetone) (Found: M', 356.1521. C,,H,,N,O, requires M, 356.1 522); L,,,/nm 290 (E 38 700), 342 (17 100) and 406sh (6900); vmax/cm-' 3260 (NH), 2180 (W),1650 (M),985 and 970 (E)-HC==CH; S,(270 MHz; CDCI,) 7.92 (2 H, s, NH), 7.29 (2 H, dd, J 15.6 and 11.0, HB), 6.75 (2 H, m, H'), 6.66 (2 H, d, J I 1.O, HA),6.49 (2 H, m, HI), 6.16 (2 H, d, J 15.6, Hc), 2.66 (2 H, s, CH,), 2.17 6 H, s, (CH,),CO and 2.04 (6 H, s, CH,) Found: C, 75.8; H, 6.1; N, 6.2.C,3H2,N,0,~(CH,),C0 requiresc, 75.4; H, 6.3; N, 6.8. 9,22-Diethoxy-13,18-dimethy1-2,7-methano-1,8-diazacyclodo-cosa-2,4,6,8,10,12,18,20,22-nonaene-14,16-diyne8.-To a stirred solution of the dilactam 7 (1 37 mg, 0.38 mmol) in dry dichloromethane (10 cm3) was added dropwise a solution of triethyloxonium tetrafluoroborate (1.90 g, 10.0 mmol) in dry dichloromethane (5 cm3)during 5 min at room temperature under argon. After stirring for a further 21 h at room temperature, further portions of the oxonium salt (each 1.10 g/3 cm3of CH,CI,) were added every 25 h. After stirring for a total 12,17-Dimethyl-2,7-methanocycloicosa-2,4,6,9,11,17,19-hepta-of 3 days, the reaction was quenched by addition of 50 ene-13,15-diyne- 1,8-dione Dioxime 6.-To a stirred solution of the tetradehydromethano20annulenedione 3 (2.50 g, 7.66 mmol) in methanol (20 cm3) and THF (460 cm3) was added in one portion a solution of hydroxylamine hydrochloride (20.0 g, 288 mmol) in water (40 cm3) at room temperature and the mixture was stirred for 1 day at 48 "C.Then a further quantity of hydroxylamine hydrochloride (40 g) in water (40 cm3) was added to the mixture and stirring was continued for a further 2 days at 48 "C. Then the mixture was poured into water and the aqueous layer was extracted with chloroform. The combined organic layers were washed with aq. sodium hydrogen carbonate, dried and concentrated. The residue was chromatographed on alumina (3.8 x 3.5 cm).The fractions eluted with 10-20 ethanol in chloroform afforded the dioxime 6 (2.39 g, 88) as yellow needles, m.p. 168-1 70 "C (decomp.) (from hexane- acetone); m/z 356 (M', 17) and 77 (100) (Found: M', 356.4); Rmax/nm243(cjdrn3 mol-' cm-' 37 000),274(30 700), 324(26 800) and 408sh (4600); vmax/cm-' 3200 (OH), 2 190 (CS), 1605 (N=C), 980 and 960 (E)-HCXH; 90 MHz; (CD,),SO 1 1.57 (2 H, s,OH), 6.94--6.( 10H,m, olefinicand7-membered-ringH),4.49 (lH,d,J12,Hb),2.086H,s,(CH,),CO,1.85(6H,s,CH3)and 1.64 (1 H, d, J 12, Ha) Found: C, 75.4; H, 6.4; N, 6.5. C23H,oN,02~(CH3)2C0requires C, 75.4; H, 6.3; N, 6.8. aqueous potassium carbonate (20 cm3) during 10 min at 3 OC. Then the mixture was poured into water and extracted with dichloromethane. The combined extracts were evaporated and the residue was chromatographed on alumina (3.2 x 7 cm).The initial fractions eluted with benzene afforded the diazaC22lan- nulene8(15 mg, 9.0) as brown needles, m.p. 149-1 50 "C (from hexane-benzene); m/z 412 (M', 100) (M, 412.5); Rmax/nm 222 (E 26 700), 285 (37 loo), 372 (7700) and 397sh (6300) and see Fig. 3; vmaX/cm-' 2170 (CK), 1635 (C=N), 1300, 1220, 1030 (a)and 960 (E)-HC==CH; 6,(500 MHz; CDCI,, 26°C) 7.03(2H,dd, J16.2and 10.8,HB),6.44(2H,d,J10.8,HA),6.14 (2 H, m, H'), 5.84 (2 H, d, J 16.2, Hc), 5.29 (2 H, m, H'), 4.19 (2 H, dq, J 10.9 and 7.1, CH,CH,), 4.12 (2 H, dq, J 10.9 and 7.1, CH2CH3),3.21 (1 H,d, J12.8,Hb),2.88(1 H,d, J12.8,Ha), 1.95 (6 H, s, CH,) and 1.29 (6 H, t, J 7.1, CH'CH,) and see Figs.1(a) and 2; 6,500 MHz; CDC1,-CF,C02D ( -2: l), 26 "C 7.29 (2 H, m, H'), 7.19 (2 H, dd, J 15.2 and 11.2, HB), 7.00 (2 H, d, J 11.2, HA), 6.94(2 H, m, H2), 6.58(2 H, d, J15.2, HC),4.75(4H, q, J 7.1, CH'CH,), 2.60 (2 H, s, CH2), 2.27 (6 H, s, CH,) and 1.63 (6 H, t, J 7.1, CH,CH,) and see Fig. l(6); 6,(125 MHz; CDCI,) 158.3 (9, C-9 and C-22), 141.0 (q, C-2 and C-7), 138.3 (t, C-12 and C-19: C-HA), 137.0 (t, C-11 and C-20: C-HB), 124.7 (t, C-4 and C-5: C-H'), 123.8 (9, C-13 and C-18), 120.0 (t, C-10 J. CHEM. SOC. PERKIN TRANS. I 1993 and C-21: C-HC), 107.7 (t, C-3 and C-6: C-HI), 82.8 and 81.2 (9, CK), 61.8 (s, CH,CH,), 43.8 (s, CH,), 22.3 (p, CH,)and 14.2 (CHZCH,); 6J125 MHz, CDCl,-CF,CO,D ( -2: l), 26 "C 171.6 (q, C-9 and C-22), 148.6 (t, C-11 and C-20: C-HB), 137.2 (t, C-12 and C-19: C-HA), 137.1 (9,C-2 and C-7), 130.3 (t, C-4 and C-5: C-H2), 122.7 (q, C-13 and C-18), 122.2 (t, C-3 and C-6: C-H'), 11 1.6 (t, C-10 and C-21: C-HC), 85.1 and 84.2 (q, Cg),73.0 (s, CH,CH3), 33.2 (s, CH,), 23.0 (p, CH,) and 14.1 (p, CH,CH,) (Found: C, 78.8; H, 6.7; N, 6.5.C,,H,,N,O, requires C, 78.6; H, 6.8; N, 6.8). The latter fractions eluted with 10 acetone in benzene afforded the recovered dilactam 7(1 03 mg). I6,2 I -Dimethyf-4,9-methanocycfotetrucosu-2,4,6,8,10,I 3,15,-21,23-nonaene-17,19-diyne-l ,12-dione Dioxime 9.-To a stirred solution of the tetradehydromethano24annulenedione 4 (1.10 g, 2.91 mmol) in methanol (30 cm3) and THF (50cm3) was added in one portion a solution of hydroxylamine hydro- chloride (12.1 g, 175 mmol) in water (20 cm3) and the mixture was stirred for 4h at 52 "C, Then the mixture was worked up as for the isolation of the compound 6.The product was chromatographed on alumina (3.2 x 4.0 cm). The fractions eluted with 4040 ethanol in chloroform afforded the dioxime 9 (623 mg, 51) as yellow microcrystals, m.p. 143-145 "C (decomp.) (from hexane-chloroform); m/z 408 (M +,6) and 51 (100) (Found: M', 408.4); A,,,/nm 230sh (E 19 500), 270 (64500),285 (60 500), 358 (29200) and 405sh (9330); vmax/ cm-' 3180 (OH), 2180 (CS), 1600 (NX) and 970 (E)-HC=CH; SH90 MHz; (CD,),SO 11.58, 1 1.48, 11.45 (1 :1:2) (2 H, s, OH), 6.93-6.42 (14 H, m, olefinic and 7-membered-ring H), 2.69 (2 H, br s, CH,) and 1.91 (6 H, s, CH,) (Found: C, 79.6; H, 6.0; N, 6.6.C,,H,,N,02 requires C, 79.4; H, 5.9; N, 6.9). 18,23-Dimethyl-5,1 0-methano- 1,13-diazacyclohexacosa-3,5,-7,9,11,15,17,23,25-nonaene-19,21-diyne-2,14-dione 10.-A solu-tion of phosphorus pentachloride (1.17 g, 5.62 mmol) in dry THF (40 cm3) was added dropwise to a stirred solution of the dioxime9 (1.15 g, 2.82 mmol) in dry THF (360 cm3) during 1 h at -18 to -15 "C. After stirring for 3 h at the same temperature, the mixture was stirred for a further 1.5 h at room temperature. Then the mixture was worked up as for the isolation of compound 7. The product was chromatographed on Daiso gel (3.6 x 8.Ocm). The fractionseluted with benzene-dichlorometh- ane (2:3) afforded the dilactam 10 (766 mg, 67) as orange needles, m.p.233-235 "C (decomp.) (from acetone-chloroforrn); m/z408 (M +, 85) and 207 (100) (Found: M +,408.4); A,,,/nm 280sh (E 45 700), 290 (46 300), 318sh (41 400) and 360 (38 600); v,,,/cm 3250 (NH), 21 80 (Cg), 1660,1620,1600 (C-, C=C)and 960 (E)-HC=CH;6,500 MHz; CDC1,-(CD,),SO (5 :l) 10.66(1 H, d, J 10.0, NH'), 8.41 (1 H, d, J 1 1.5, NH2), 7.59 (1 H, d,J15.4,Ht'),7.50(1 H,dd, J15.2and 11.5,HB),7.47(1 H,dd,J 13.8and11.5,HC'),7.22(1H,dd,J14.5andT0.0,HD),6.85(1H, dd, J 10.5and 6.2, H2), 6.81 (1 H, d, J 11.5, HA), 6.73 (1 H, d, J 11.2, HA'), 6.73-6.70 (2 H, m, H3 and H4), 6.37 (1 H, d, J 15.2, HC),6.35(1 H,d, J6.2, H'),6.27(1 H,d, J 14.5, HE), 6.13 (1 H,d, J 15.4,HD'),6.06(1 H, dd, J 13.8 and 11.2, HB), 3.40(2 H, s, CH,), 2.04(3 H, s, Me') and 1.94(3 H, s, Me") (Found: C, 79.4; H, 5.95; N, 6.6.C,,H,,N202 requires C, 79.4; H, 5.9; N, 6.9). 18,23-Dimrthyl-6,1l-methanocyclohexacosa-2,4,6,8,10,12,I5, 17,23,25-decaene-l9,21-diyne-1,14-dioneDioxime 11.-To a stirred solution of the tetradehydromethano26annulenedione 5 (1.42 g, 3.52 mmol) in methanol (40cm3) and THF (200 cm3) was added in one portion a solution of hydroxylamine hydro- chloride (4.60 g, 66 mmol) in water (8 cm3) at room temperature. The mixture was stirred for I h at 52 OC, after which a further quantity of hydroxylamine hydrochloride (7.50 g, 107 mmol) in water (5 cm3) was added and stirring was 981 continued for a further 5 h at 52°C.Then the mixture was worked up as for the isolation of the compound 6.The product was chromatographed on alumina (3.8 x 2 cm). The fractions eluted with ethanol-dichloromethane (1 :1) afforded the diox- ime 11 (1.16 g, 77) as yellow microcrystals, m.p. 1641 65 "C (decomp.) (from hexane-chloroform); m/z 432 (M +,10) and 83 (100) (Found: M+, 434.5); A,,,/nm 261 (E 50 300), 298 (82 OW), 365 (29 000) and 401sh (1 7 800); v,,,/cm-' 3185 (OH), 2180 (CK), 1600 (N=C) and 960 (E)-HC=CH; 6,90 MHz; (CD,),SO 11.40 (2 H, br s, OH), 7.08-6.22 (16 H, m, olefinic and 7-membered-ring H), 2.67 (2 H, s, CH,) and 1.93 (6 H, s, CH,) (Found: C, 80.1; H, 6.0; N, 6.2. C,9H26N,0, requires C, 80.2; H, 6.0; N, 6.45). 20,25-Dimethy1-7,12-methano-1,15-diazacyclooctacosa-3,5,7,-9,11,13,17,19,25,27-decaene-21,23-diyne-2,16-dione 12.-A sol-ution of phosphorus pentachloride (220 mg, 1.12 mmol) in dry THF (10 cm3) was added dropwise to a stirred solution of dioxime 11 (406 mg, 0.93 mmol) in dry THF (60 cm3) during 10 min at -12 "C and the solution was stirred for 4 h at -4 "C.Then the mixture was worked up as for the isolation of compound 7.The product was chromatographed on alumina (3.2 x 7 cm). The fractions eluted with chloroform afforded the dilactam 12 (73 mg, 18) as red needles, m.p. 238-240 "C (decomp.) (from methanol); m/z 434 (M , 100) (Found: M ,+ + 434.5); AmaX/nm 275 (E 22 700) and 338 (67 400); v,,,/cm-' 3240 (NH), 2180 (M),1660, 1620 (W,C=C), 990 and 950 (E)-HC==CH; 6,500 MHz; CDCI,-(CD,),SO 8.90 (1 H, br d, J 11.0, NH'), 8.13 (1 H, dd, J 14.8 and 11.4, HB),7.89(1 H, dd, J 14.3 and 11 .O, HD), 7.22(2 H,m, HE'and HF'), 7.15 (1 H, d, J 11.0, NH'), 7.06 (1 H, dd, J 13.6 and 11.0, H"), 6.97 (1 H, dd, J 13.6 and 11.4, HB'), 6.76 (1 H, m, HD'), 6.57 (1 H, m, HG'),6.54 (2H,m, H2andH3),6.50(1 H,d,JI 1.4, HA'),6.36(1 H,d,Jll.4, HA), 6.33 (1 H, m, H4), 6.12 (1 H, m, HI), 5.94( 1 H, d, J 14.3,HE), 5.81 (1 H, d, J 14.8, HC), 2.87 (2 H, br s, CH,), 1.98 (3 H, s, Meb) and 1.83 (3 H, s, Me") (Found: C, 77.1; H, 6.6; N, 5.95.C2,H,,N,0,~CH,0H requires C, 77.2; H, 6.5; N, 6.0). Acknowledgements Financial support by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, and by grants from The Nishida Research Fund for Funda- mental Organic Chemistry and The Sumitomo Research Fund, is gratefully acknowledged.References 1 T. M. Cresp, J. Ojima and F. Sondheimer, J. Org. Chem., 1977,42, 2130; J. Ojima, Y. Shiroishi, K. Wada and F. Sondheimer, J. Org. Chem., 1980,45,3564;J. Ojima, K. Wada and M. Terasaki, J. Chem. SOC.,Perkin Trans. I, 1982, 51 and the references cited therein. 2 (a)J. Ojima, T. Nakada, M. Nakamura and E. Ejiri, Tetrahedron Lett., 1985,635; (h) J. Ojima, T. Nakada, E. Ejiri and M. Nakamura, Tetrahedron Lett., 1985,639;(c)J. Ojima, T. Nakada, E. Ejiri and M. Nakamura, J. Chem. SOC.,Perkin Trans. I, 1986.933. 3 (a) J. Ojima, E. Ejiri, T. Kato, S. Kuroda and M. Shibutani, Tetrahedron Lett., 1986,27, 2467; (b)J.Ojima, E. Ejiri, T. Kato, M. Nakamura, S. Kuroda, S. Hirooka and M. Shibutani, .I.Chem. SOC., Perkin Trans. I, 1987,831; (c)J. Ojima, S. Fujita, M. Masumoto, E. Ejiri, T. Kato, S. Kuroda, Y. Nozawa and H. Tatemitsu, J. Chem. Soc., Chem. Commun., 1987, 534; (d) J. Ojima, S. Fujita, M. Masumoto, E. Ejiri, T. Kato, S. Kuroda, Y. Nozawa, S. Hirooka, Y. YoneyamaandH.Tatemitsu, J.Chem.Soc.,Perkin Trans. I, 1988,385. 4 J. Ojima, T. Hashimoto, J. Katsuyama, H. Miyashita, S. Fujita, S. Kuroda, Y. Kano and G. Yamamoto, J. Chem. Sac.,Perkin Trans. I, 1990,333. 5 G.Yamamoto, H. Higuchi, Y. Takai and J. Ojima, Chem. Lett., 1992, 857; H. Higuchi, K. Asano, K. Nakafuku, Y. Takai, J. Ojima and G. Yamamoto, J. Chem. SOC.,Perkin Trans. I, 1993,89. 6 P. J. Garratt, Aromaticity, Wiley, New York, 1986, p. 218; A. T. Balaban, M. Banciu and V. Ciorba, Annulenes, Benzo-, Hetero-, Homo-Derivatives and Their Valence Isomers, CRC Press, Florida, 1988, vol. 111, p. 1. 7 L. G. Donaruna and W. L. Heldt, Org. React., 1960,11, 1. 8 L. M. Jackman and S. Sternhell, Applications of Nuclear Mugnetic Resonance Spectroscopy in Organic Chemistry, Pergamon, London, 1969, pp. 280-304. 9 A. R. Katritzky, M. Karelson and N. Malhotra, Heterocycles, 1991, 32, 127. 10 G. Yamamoto, H. Higuchi, H. Yamamoto and J. Ojima, Bull. Chem. SOC.Jpn., 1992,65,2388. J. CHEM. SOC. PERKIN TRANS. I 1993 11 D. A. Kleier and G. Binsch, QCPE Program No. 165. 12 M. Nakagawa, Pure Appl. Chem., 1975,44, 885. 13 See P. J. Garratt and K. Grohmann, in Houhen-WeyI, Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 1972, vol. V, Id, pp. 533-535. Paper 21064226 Received 1st December 1992 Accepted 19th January 1993
机译:975J. CHEM. soc. PERKIN TRANS. i 1993 Synthesis of Met hano- br idged Tet rade hyd rod iaza[221ann u lene and Related Compounds Hiroyuki Higuchi, a Hiroyuki Yamamoto,8 J6ro Ojima +A and Gaku Yamamoto *r6 a 东山大学理学院化学系, Gofuku, Toyama 930, Japan 理学院化学系, 东京大学,文京区,东京 I 13,日本 描述了9,22-二乙氧基-l3,18-二甲基-l4,15.16,17-四氢-2,7-亚甲基-l,8-二氮杂[22]-环烯(9,22-二乙氧基-l3,18-二甲基-2,7-亚甲基-l,8-二氮杂环二碳-2,4,6,8,lO,12,18,2O,-22-壬烯-14.16-二炔)的合成。对'H NMR和电子光谱的检查表明,二氮[22]环烯没有环电流效应,但尽管具有潜在的变频性22n电子系统,但仍显示出聚烯烃特性。还描述了制备高级类似物diaza [24]和-[26]环烯的尝试。在之前的论文中,我们已经报道了迄今为止获得的具有两个杂原子的系列异环烯的合成,其中单环四氢氮杂环烯2,高级乙烯基两个杂原子都取代了吡啶环烯的碳原子,从一系列四氢氢周长开始.'j annulenones 1',并显示了具有 14 至 22 元环的化合物 2 中 [4n + 21x- 和 [4n]~-电子体系之间的热带性质交替.2 结果与讨论氮杂环烯 2 的合成从合成开始。-四氢甲醇C20)和环烯酮1的处理主要涉及(i)用过量的盐酸羟胺相应的肟制备nulenedione 3,(ii)Beckmann重排在甲醇、四氢呋喃(THF)和水中,得到二胺,最后(iii)用肟6对内酰胺进行0烷基化,收率为88%。Meerwein试剂只有一个单线态的出现。这种成功的反应序列导致羟基质子似乎表明化合物6的存在,正如我们期望的那样,从适当的环二烯二烯开始,单一的异构体,但构型在此阶段尚不清楚。二氮杂环烯,嘧啶或吡嗪的高级类似物 化合物6的用五氯化磷处理可能制备。我们现在已经意识到这种期望在四氢呋喃(THF)引起双贝克曼重排实践中。由于已发现甲烷桥可产生地内酰胺 7 (28%)。化合物的结构有助于在我们的 7 中保持环烯周长平面,这是根据其对甲烷桥接的四十四氢环烯和光谱的 H NMR 研究(见下文)确定的。因此,两种酰胺氮都直接与环庚三烯环结合,~甲烷桥接环二酮3-5。由于贝克曼制剂最近才被报道,并且重排通常进行,因此取代基反其高级类似物,“似乎是理想的开始羟基从C移动到N,7OH构型材料用于合成二氮环烯。二肟 6 的甲醇应为指示的那些。这样得到的桥接二氮杂C22)环烯8是最大的二肟9(51%),由四氢得到 0 OEt 1 2 /TI =1-3 m =1-3 n =1-3 n =1-3 0 [20]-3:m = n = 0 [24]-4: rn = n = 1 [26]-5: m = 1, n = 2 976 J. CHEM. SOC. PERKIN TRANS.我 1993 .Me 3 N Me OH 6 +EmMe OEt 8a methanoC24lannulenedione 4 由立体异构体的不可分割的混合物组成,从三个羟基质子信号的出现判断(见实验部分)。混合物的贝克曼重排使地内酰胺 10 (67%) 成为唯一可分离产物。化合物 10 的 'H NMR 谱图表明它具有所示的几何形状。因此,不对称结构9可以归于前体二肟的主要异构体。同样,从四氢甲烷C261环烯二酮5中获得的二肟11(77%)转化为二内酰胺12,收率低(18%)。12 的 'H NMR 谱图显示,12 仅由式所示的一种区域异构体组成,其中两个酰胺部分再次具有相反的方向。地内酰胺 7 与 Meerwein 试剂的反应缓慢且未完成。地内酰胺7在室温下与大量过量的四氟硼酸三乙基氧铵在二氯甲烷中反应3天,得到所需的四氢二氮[22]环烯8,收率低(9%),底物回收率高.由此获得的四氢二氮杂[22]环烯8作为固体和溶液相对稳定。通过改变反应温度和反应时间,在几种不同的条件下尝试将二内酰胺 10 和 12 分别转化为相应的二氮杂 C26)- 和 -[28 Jannulenes。然而,化合物10和12与大量过量的四氟硼酸三乙氧铵的反应没有进行,并且由于化合物10和12在反应条件下的不稳定性,导致底物分解。值得注意的是,丙酮的二肟 6 和地内酰胺 7 以及甲醇的二内酰胺 12 的再结晶分别以 1:1 的摩尔比得到含有结晶溶剂的晶体,如“H NMR 波谱和元素分析”所证明的那样(见实验部分)。H 和 13CNMR 光谱-二内酰胺 7、10 和 12 中烯烃质子的化学位移分配(见实验部分)如下。宽双峰信号被分配给与甲基相邻的质子,因为展宽是由于烯丙基与甲基质子偶联,如解耦实验揭示的7 p'-Me OEt 8,而尖锐的双峰被分配给与羰基或环庚三烯环相邻的质子。与氮相邻的质子很容易分配,因为这些质子显示出与NH质子的耦合。然后通过连续的解耦实验确定了沿多烯部分的质子序列。所有 -CH=CH- 部分都显示 Jvic 15-16 Hz 表示 E 构型,而 =CH-CH= 部分显示 Jvic10-1 1 Hz 表示 s-反式构象.8 甲基信号的辐照导致双峰信号的强度增强 (NOE) 由于各自相邻的烯烃质子 HA(和 HA'),清楚地表明 HA(和 HA')位于大环之外。因此,化合物 7,lO和 12 的几何形状由结构式所示确定。在CDCl中在26“C下采集的四氢-甲烷二氮[22]环烯8的500 MHz'H NMR谱图如图l(a)所示。由于化合物 8 的潜在 22n-芳香族系统,预计具有变幻性,这将使内部质子(HB 和甲烷桥质子)的信号处于比其正常位置更高的场,而外部质子的信号处于较低的场。与这种预期相反,HB信号出现在最低场,尽管这可能部分归因于二炔部分的去屏蔽各向异性效应。所有其他质子都有正常的化学位移。这些特征表明化合物 8 本质上是阿特性的。这与密切相关的碳环类似物13的行为形成鲜明对比,后者在6 0.91处与甲烷桥质子在6 0.91处和甲基在6 2.36处的信号表现出强烈的向异性。这表明大环是非平面的,在26“C的NMR时间尺度上,甲烷桥的翻转是缓慢的。已发现异环烯的二向性或副向性程度远小于相应的碳环环烯,6 我们发现单氮杂C22lan-nulene 14显示出二向异性,尽管很小,与二炔部分相邻的甲基信号在6 2.10和J. CHEM. SOC. PERKIN TRANS.I 1993 (b) OCH2CH3 I HCH2 OCH2 I II1 I“”l“.~ I”“”“'''我'我'..'我'我.''。1“”~“ 8 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.0 1.5 图 1500 MHz 'H 化合物 8 在 26 OC 下的 NMR 谱图:(a) 在 CDCI 中,(b) 在 CDC1,-CF,CO,D ( -2 :1) 中。由于 CHCI、OH HO-N Me 9 OH / 11 2.15 的峰值。“从嘧啶或吡嗪具有相似的共振能,因此与吡啶相似的趋向性来看,”目前的二氮化合物8应该表现出与单氮化合物14相似的向异性,因此,我们认为化合物8的萎缩性不是由于在亚热带碳环[22]环烯体系13中引入了两个氮原子,但可归因于分子骨架的非平面性。在化合物 8 中,乙氧基必须位于大环外。因此,化合物 8 不能采用类似于化合物 13 的骨架构象,它比化合物 8 被迫采用的构象更平面,因此更稳定。我们还研究了化合物 8 在酸性介质中的 H NMR 谱图,以获得有关质子化对该化合物几何形状和向性影响的信息。在CDCl中加入九分之一体积的CF,CO,D,化合物8的10 12溶液,使'H NMR谱图发生了巨大变化。进一步添加CF,CO,D显示光谱没有进一步变化,表明化合物8已被完全氘化,产生dicationic物种8a。CDCl,-CF,CO,D(ca.2:1)中8的'H NMR谱图如图I(b)所示。除桥亚甲基质子的信号外,所有质子的信号都向下移动。这些结果可能归因于n电子密度的降低,这是由于电子通过氘化而撤出引起的,而不是由于热带性的任何变化,尽管桥接亚甲基质子的上场位移的原因尚不清楚。CDC1,-CF,CO,D (ca. 2: 1) 中 8 的 13CNMR 谱图显示出一种有趣的行为。将溶剂从 CDCl 更改为 CDC13-CF3C02D 后,C-3/C-6、C-9/C-22 和 C-1 I/C-20 显示出较大的下场位移(分别为 14.5、13.3 和 11.6 ppm),而 C-lO/C-21 在上场强烈位移 (8.4ppm) 以及 C-2/C-7 的小上场位移 (3.9 ppm)。这 978 J. CHEM. SOC. PERKIN TRANS.I 1993 4.3 4.2 4.1 6 3.3 3.2 3.1 3.0 2.9 2.8 6 图2 CDCI中化合物8的温度依赖性'H NMR谱图:(a)甲烷桥质子和(b)OCH,质子。左边是在不同温度下观察到的光谱(“C”),右边是计算出的具有最佳拟合速率常数(s-')的光谱,清楚地表明电子密度交替发生 化合物 8.411 阶的亚甲基桥沿大环外围翻转。类似的行为是获得先前在四氢1 Slannulenone衍生物中观察到的翻转能量势垒的信息 - 甲烷桥,一种可变温度的'H NMR研究'。OCH,碳显示出较大的下场偏移(1 1.2 在 CDCl 中对 diazaC22 lannulene 8 进行了 ppm),可能是由于氧温度范围内的电荷密度分布 26-60 “C.这些光谱以生成原子表示。甲烷桥碳显示了一个大的上场图2,以及使用DNMR3位移(10.7 ppm)计算的光谱,尽管这种位移的起源尚不清楚。程序。在CDC1中化合物8的三个温度下测定速率常数,-43、51和60“C的速率常数,使甲烷桥和CF,CO,D在26”C时都表现为单线态,而亚甲基OCH,信号在每个温度下都给出了相同的最佳拟合值。乙氧基的质子在磁性上也是等效的,表明甲烷桥翻转在桥上的活化自由能计算为17.2 kcal mol-',*,而该介质中NMR时间尺度的焓。这可能是因为活化的熵和熵不可靠,因为物种 8a 中的窄分子骨架比中性 8 的分子骨架更灵活,可能是由于原始 C=N 键的单键特性增加。* 1 cal = 4.184 J. J. CHEM.SOC. PERKIN TRANS.I 1993 300 400 500 600 1Inm 图3 C22lannulene 13 (----)、azaC22lannulene 14 (- .-. -) 和 diazaC22lannulene 8 (-) 在 THF Me 13 温度范围内的电子吸收光谱,未给出。密切相关的碳环[22 Jannulene 13的亚甲基桥信号在-60 0C,36下保持单线态,该过程的活化能估计小于12 kcal mol-'。因此,这一事实可能支持上述解释,即由于乙氧基的存在,diazaC22lannulene 8 的分子骨架被迫为非平面。电子光谱-四氢二氮杂[22]-环烯8的电子吸收光谱(以THF)为单位,如图3所示,以及密切相关的化合物四氢基聚醚-并[22]环烯133b和四氢氮杂C22 Jannulene 14“,两者都已被证实具有抗性。值得注意的是,这些光谱在形状上彼此相似,并显示出(4n + 2)x电子系统的三个不同的吸收带特征,正如碳环(4n + 2)x-环烯和脱氢环烯的光谱所认识到的那样。“这一特征可以合理地归因于14个事实,即所有这些化合物都具有22x电子周长。然而,从图3中可以清楚地看出,二氮杂C22镭烯8的所有能带的波长都比[22]环烯13和氮杂[22]环烯14的相应能带短约80 nm,表明8是抗变性的,而13和14是向变性的,这与'H NMR波谱的结论一致。据报道,内酰胺类15(氮杂环烯2的前体)系列显示出热带性.2'根据这一结果,它们的主要(最强)吸收最大值在(4n + 2)和(4n)x系统之间的主要吸收最大值的波长上显示出相同的交替,正如已经证明的单环环烯和脱氢环~1烯.l~ 在这里,我们可以比较二内酰胺 10 ([26J-: 290 nm) 和 12 ([28]-:338 nm)。因此,很明显,(4n + 2)x-二内酰胺 10 的主要吸收最长并不比 (4n)x-二内酰胺 12 的波长长长,这表明二内酰胺 10 和 12 以及二内酰胺 7 都是阿特性的,如 'H NMR 波谱所示(见实验部分)。980 J.CHEM. SOC. PERKIN TRANS. 1 1993 Me Me 15 m =1-3 n =1-3 实验 M.p.s 是在热阶段设备上测定的,未经校正。用 Hitachi 260-50 分光光度计将 1R 光谱作为 KBr 圆盘采集,并针对聚苯乙烯进行校准;仅描述显著的最大值。在四氢呋喃 (THF) 溶液中测量电子光谱,并使用 Hitachi 220A 分光光度计运行。使用直接入口系统在 75 eV 下工作的 JEOL JMS-D 300 光谱仪记录质谱图。使用JEOL FX-90Q(90 MHz)、GX-270(270 MHz)或布鲁克AM-500(500 MHz)光谱仪在89.60,270.16或500处记录环境温度下的H NMR谱图。分别为 14 MHz,SiMe,用作内部标准。J 值以 Hz 为单位给出。 必要时通过使用解耦实验来澄清分配。在AM-500光谱仪上进行变温'H NMR测量,并用乙二醇样品校准温度。I3C NMR 谱图是用布鲁克 AM-500 波谱仪在 125.76 MHz 下记录的,SiMe 用作内标。质子化碳的化学位移被明确地分配在C-H COSY谱上。使用Merck氧化铝(活性11-111)或Daiso Gel 1001 W进行柱层析。所有反应的进展之后,使用默克预涂层硅胶进行TLC。使用前用氢化钙蒸馏二氯甲烷。使用前,在氮气气氛下从二苯甲酮酮钠蒸馏出四氢呋喃(THF)。用二氯甲烷或氯仿洗涤有机提取物,用饱和水溶液洗涤氯化钠,并在除去溶剂之前用无水氯化钙干燥。溶剂在水泵压力下蒸发。将13,18-二甲基-2,7-甲桥-1,8-二氮杂环二碳-2,4,6,10,-12,18,20-庚烯-l4,16-二炔-9,22-二酮7.-将五氯化磷(600mg,2.88mmol)在干燥THF(32 cm3)中的溶液在-12“C下滴加到干燥THF(20cm3)中的二肟6(109mg,0.31 mmol)的搅拌溶液中,在-12”C下搅拌5小时。然后将溶液倒入水溶液中。碳酸氢钠和混合物用氯仿萃取。合并后的提取物用盐水洗涤并干燥。将除去溶剂后获得的残留物在氧化铝(3.2 x 6 cm)上色谱。用10%丙酮在苯中洗脱的馏分得到二内酰胺7(39mg,28%)为红色立方体,熔点264-265“C(分解)(来自己烷丙酮)(找到:M',356.1521。C,,H,,N,O,需要 M, 356.1 522);L,,,/nm 290 (E 38 700)、342 (17 100) 和 406sh (6900);vmax/cm-' 3260 (NH)、2180 (W)、1650 (M)、985 和 970 [(E)-HC==CH];S,(270 MHz;CDCI,) 7.92 (2 H, s, NH), 7.29 (2 H, dd, J 15.6 and 11.0, HB), 6.75 (2 H, m, H'), 6.66 (2 H, d, J I 1.O, HA), 6.49 (2 H, m, HI), 6.16 (2 H, d, J 15.6, Hc), 2.66 (2 H, s, CH,), 2.17 [6 H, s, (CH,),CO] 和 2.04 (6 H, s, CH,) [找到: C, 75.8;H,6.1;N, 6.2.C,3H2,N,0,~(CH,),C0 需要, 75.4;H,6.3;N,6.8%]。9,22-二乙氧基-13,18-二甲基1-2,7-亚甲基-1,8-二氮杂环氧代-2,4,6,8,10,12,18,20,22-壬烯-14,16-二炔8.-在干燥的二氯甲烷(10cm3)中的地内酰胺7(1 37mg,0.38mmol)的搅拌溶液中,在室温下氩气下在室温下滴加三乙氧铵四氟硼酸盐(1.90g,10.0mmol)在干燥的二氯甲烷(5cm3)中的溶液5分钟。在室温下再搅拌21小时后,每25小时加入更多份的氧盐(每个1.10 g / 3 cm 3 CH,CI)。在搅拌3天共12,17-二甲基-2,7-甲烷环烟-2,4,6,9,11,17,19-庚-3天后,通过加入50%烯-13,15-二炔-1,8-二酮二肟6-向四氢甲醇[20]环二酮3(2.50g,7.66mmol)的搅拌溶液中加入一份盐酸羟胺溶液(20.0g, 288 mmol)在室温下在水(40 cm3)中,将混合物在48“C下搅拌1天,然后向混合物中加入又一定量的盐酸羟胺(40 g)在水(40 cm3)中,并在48”C下继续搅拌2天。然后将混合物倒入水中,用氯仿萃取水层。将合并后的有机层用水溶液、碳酸氢钠洗涤、干燥和浓缩。将残留物在氧化铝(3.8 x 3.5 cm)上色谱。用10-20%乙醇在氯仿中洗脱的馏分得到二肟6(2.39克,88%)为黄色针状,熔点168-1 70“C(分解)(来自己烷-丙酮);m/z 356 (M', 17%) 和 77 (100) (发现: M', 356.4);Rmax/nm243(cjdrn3 mol-' cm-' 37 000)、274(30 700)、324(26 800)和408sh(4600);vmax/cm-' 3200 (OH), 2 190 (CS), 1605 (N=C), 980 和 960 [(E)-HCXH];&[90兆赫;(CD,),SO] 1 1.57 (2 H, s,OH), 6.94--6.&( 10H,m, 烯烃和7-元环H),4.49 (lH,d,J12,Hb),2.08[6H,s,(CH,),CO],1.85(6H,s,CH3)和1.64 (1 H, d, J 12, Ha) [发现: C, 75.4;H,6.4;N,6.5。C23H,oN,02~(CH3)2C0需要C,75.4;H, 6.3;N,6.8%]。碳酸钾水溶液(20cm3)在3OC下10分钟。然后将混合物倒入水中并用二氯甲烷提取。蒸发合并的提取物,并将残留物在氧化铝(3.2 x 7 cm)上色谱。用苯洗脱的初始馏分得到二氮杂C22lan-nulene8(15 mg,9.0%)为棕色针状,熔点149-1 50“C(来自己烷-苯);m/z 412 (M', 100%) (M, 412.5);Rmax/nm 222 (E 26 700)、285 (37 loo)、372 (7700) 和 397sh (6300) 见图 3;vmaX/cm-' 2170 (CK)、1635 (C=N)、1300、1220、1030 (a) 和 960 [(E)-HC==CH];6,(500兆赫;CDCI,, 26°C) 7.03(2H,dd, J16.2和10.8,HB),6.44(2H,d,J10.8,HA),6.14 (2 H, m, H'), 5.84 (2 H, d, J 16.2, Hc), 5.29 (2 H, m, H'), 4.19 (2 H, dq, J 10.9 and 7.1, CH,CH,), 4.12 (2 H, dq, J 10.9 and 7.1, CH2CH3),3.21 (1 H,d, J12.8,Hb),2.88(1 H,d, J12.8,Ha), 1.95 (6 H, s, CH,) 和 1.29 (6 H, t, J 7.1, CH'CH,) 见图1(a)和图2;6,[500兆赫;CDC1,-CF,C02D ( -2: l), 26 “C] 7.29 (2 H, m, H'), 7.19 (2 H, dd, J 15.2 和 11.2, HB), 7.00 (2 H, d, J 11.2, HA), 6.94(2 H, m, H2), 6.58(2 H, d, J15.2, HC),4.75(4H, q, J 7.1, CH'CH,), 2.60 (2 H, s, CH2), 2.27 (6 H, s, CH,) 和 1.63 (6 H, t, J 7.1, CH,CH,),见图l(6);6,(125兆赫;CDCI,) 158.3 (9, C-9 和 C-22), 141.0 (q, C-2 和 C-7), 138.3 (t, C-12 和 C-19: C-HA), 137.0 (t, C-11 和 C-20: C-HB), 124.7 (t, C-4 和 C-5: C-H'), 123.8 (9, C-13 和 C-18), 120.0 (t, C-10 J. CHEM. SOC. PERKIN TRANS.I 1993 和 C-21:C-HC)、107.7(t、C-3 和 C-6:C-HI)、82。8 和 81.2 (9, CK)、61.8 (s, CH,CH,)、43.8 (s, CH,)、22.3 (p, CH,) 和 14.2 (CHZCH,);6J125 MHz,CDCl,-CF,CO,D(-2:l),26“C] 171.6(q,C-9和C-22),148.6(t,C-11和C-20:C-HB),137.2(t,C-12和C-19:C-HA),137.1(9,C-2和C-7),130.3(t,C-4和C-5:C-H2),122.7(q,C-13和C-18),122.2(t,C-3和C-6:C-H'),11 1.6(t,C-10和C-21:C-HC), 85.1 和 84.2 (q, Cg)、73.0 (s, CH,CH3)、33.2 (s, CH、)、23.0 (p, CH,) 和 14.1 (p, CH,CH,) (发现: C, 78.8;H,6.7;N, 6.5.C,,H,,N,O, 需要 C, 78.6;H,6.8;N,6.8%)。用10%丙酮在苯中洗脱的后一种馏分得到回收的地内酰胺7(1 03 mg)。I6,2 I-二甲基-4,9-甲烷基-2,4,6,8,10,I 3,15,-21,23-壬烯-17,19-二炔-l ,12-二酮二肟 9.-在四氢甲醇[24]环烯二酮4(1.10g,2.91mmol)的甲醇(30cm3)和THF(50cm3)的搅拌溶液中,在一份中加入盐酸羟胺(12.1g,175mmol)在水(20 cm3)中的溶液,并将混合物在52“C下搅拌4h, 然后将混合物处理成化合物6的分离,将产物在氧化铝(3.2 x 4.0 cm)上色谱。用4040%乙醇在氯仿中洗脱的馏分得到二肟9(623mg,51%)为黄色微晶,熔点143-145“C(分解)(来自己烷-氯仿);m/z 408 (M +,6%) 和 51 (100) (发现: M', 408.4);A,,,/nm 230sh (E 19 500)、270 (64500)、285 (60 500)、358 (29200) 和 405sh (9330);vmax/ cm-' 3180 (OH)、2180 (CS)、1600 (NX) 和 970 [(E)-HC=CH];SH[90兆赫;(CD,),SO] 11.58, 1 1.48, 11.45 (1 :1:2) (2 H, s, OH), 6.93-6.42 (14 H, m, 烯烃和7元环H), 2.69 (2 H, br s, CH,) 和 1.91 (6 H, s, CH,) (发现: C, 79.6;H,6.0;N, 6.6.C,,H,,N,02 需要 C, 79.4;H,5.9;N,6.9%)。18,23-二甲基-5,1,0-甲桥-1,13-二氮杂环己烟-3,5,-7,9,11,15,17,23,25-壬烯-19,21-二炔-2,14-二酮10.-在干燥THF(40cm3)中溶解五氯化磷(1.17g,5.62mmol)在-18至-15“C下滴加到干燥THF(360cm3)中的二肟9(1.15g,2.82mmol)的搅拌溶液中1小时。在相同温度下搅拌3小时后,将混合物在室温下再搅拌1.5小时。然后对混合物进行处理,以分离化合物7。将产物在Daiso凝胶(3.6 x 8.Ocm)上色谱。用苯-二氯甲基烷(2:3)稀释的馏分得到地内酰胺10(766毫克,67%)作为橙色针,m.p.233-235“C(分解)(来自丙酮-氯福恩);m/z408 (M +, 85%) 和 207 (100) (发现: M +,408.4);A,,,/nm 280sh (E 45 700)、290 (46 300)、318sh (41 400) 和 360 (38 600);v,,,/cm 3250 (NH), 21 80 (Cg), 1660,1620,1600 (C-, C=C)和 960 [(E)-HC=CH];6,[500兆赫;CDC1,-(CD,),SO (5 :l)] 10.66(1 H, d, J 10.0, NH'), 8.41 (1 H, d, J 1 1.5, NH2), 7.59 (1 H, d,J15.4,Ht'),7.50(1 H,dd, J15.2and 11.5,HB),7.47(1 H,dd,J 13.8and11.5,HC'),7.22(1H,dd,J14.5andT0.0,HD),6.85(1H,dd,J 10.5和6.2,H2),6.81(1 H,d,J 11.5,HA),6.73(1 H,d,J 11.2,HA'),6.73-6.70(2 H,m,H3和H4),6.37(1 H,d,J 15.2,HC),6.35(1 H,d,J6.2,H'),6.27(1 H,d,J 14.5,HE),6.13(1 H,d, J 15.4,HD'),6.06(1 H, dd, J 13.8 和 11.2, HB), 3.40(2 H, s, CH,), 2.04(3 H, s, Me') 和 1.94(3 H, s, Me“) (发现: C, 79.4;H,5.95;N, 6.6.C,,H,,N202 需要 C, 79.4;H,5.9;N,6.9%)。18,23-二甲基-6,1l-甲烷基环己烟-2,4,6,8,10,12,I5,17,23,25-癸烯-l9,21-二炔-1,14-二肟11.-在四氢甲醇[26]环烯二酮5(1.42g,3.52mmol)的甲醇(40cm3)和THF(200cm3)的搅拌溶液中,在一份中加入盐酸羟胺溶液(4.60g,66mmol)在室温下在水(8cm3)中。将混合物在52°C下搅拌I h,然后再加入一定量的盐酸羟胺(7.50g,107mmol)水溶液(5cm3),在52°C下继续搅拌981继续5小时。用乙醇-二氯甲烷(1:1)洗脱的馏分得到二氧胭脂11(1.16g,77%)为黄色微晶,熔点1641 65“C(分解)(来自己烷-氯仿);m/z 432 (M +,10%) 和 83 (100) (发现: M+, 434.5);A,,,/nm 261 (E 50 300)、298 (82 OW)、365 (29 000) 和 401sh (1 7 800);v,,,/cm-' 3185 (OH)、2180 (CK)、1600 (N=C) 和 960 [(E)-HC=CH];6,[90兆赫;(CD,),SO] 11.40 (2 H, br s, OH), 7.08-6.22 (16 H, m, 烯烃和七元环 H), 2.67 (2 H, s, CH,) 和 1.93 (6 H, s, CH,) (发现: C, 80.1;H,6.0;N,6.2。C,9H26N,0,要求C,80.2;H,6.0;N,6.45%)。20,25-二甲基-1-7,12-亚甲基-1,15-二氮杂环辛碳联-3,5,7,-9,11,13,17,19,25,27-癸烯-21,23-二炔-2,16-二酮 12.-将干燥THF(10 cm3)中的五氯化磷(220 mg,1.12 mmol)溶剂滴加到干燥THF(60 cm3)中的二肟1(406mg,0.93 mmol)在-12“C下搅拌10分钟,并将溶液在-4”C下搅拌4小时。化合物7.产物在氧化铝(3.2 x 7 cm)上色谱。用氯仿洗脱的馏分得到地内酰胺12(73mg,18%)为红色针头,熔点238-240“C(分解)(来自甲醇);m/z 434 (M , 100%) (发现: M ,+ + 434.5);AmaX/nm 275 (E 22 700) 和 338 (67 400);v,,,/cm-' 3240 (NH), 2180 (M),1660, 1620 (W,C=C), 990 和 950 [(E)-HC==CH];6,[500兆赫;CDCI,-(CD,),SO] 8.90 (1 H, br d, J 11.0, NH'), 8.13 (1 H, dd, J 14.8 和 11.4, HB),7.89(1 H, dd, J 14.3 和 11 .O, HD), 7.22(2 H,m, HE'and HF'), 7.15 (1 H, d, J 11.0, NH'), 7.06 (1 H, dd, J 13.6 and 11.0, H“), 6.97 (1 H, dd, J 13.6 and 11.4, HB'), 6.76 (1 H, m, HD'), 6.57 (1 H, m, HG'), 6.54 (2H,m, H2andH3),6.50(1 H,d,JI 1.4, HA'),6.36(1 H,d,Jll.4, HA), 6.33 (1 H, m, H4), 6.12 (1 H, m, HI), 5.94( 1 H, d, J 14.3,HE), 5.81 (1 H, d, J 14.8, HC), 2.87 (2 H, br s, CH,), 1.98 (3 H, s, Meb) 和 1.83 (3 H, s, Me“) (发现: C, 77.1;H,6.6;N, 5.95.C2,H,,N,0,~CH,0H 需要 C, 77.2;H,6.5;N,6.0%)。致谢 感谢日本文部科学文化省的科学研究补助金,以及西田有机化学基础研究基金和住友研究基金的资助。参考文献 1 T. M. Cresp, J. Ojima and F. Sondheimer, J. Org. Chem., 1977,42, 2130;J. Ojima, Y. Shiroishi, K. Wada and F. Sondheimer, J. Org. Chem., 1980,45,3564;J. Ojima, K. Wada and M. Terasaki, J. Chem. SOC.,Perkin Trans.I, 1982, 51 以及其中引用的参考文献。2 (a)J. Ojima, T. Nakada, M. Nakamura and E. Ejiri, Tetrahedron Lett., 1985,635;(h) J. Ojima, T. Nakada, E. Ejiri and M. Nakamura, Tetrahedron Lett., 1985,639;(c)J. Ojima, T. Nakada, E. Ejiri and M. Nakamura, J. Chem. SOC.,Perkin Trans. I, 1986.933.3 (a) J. Ojima, E. Ejiri, T. Kato, S. Kuroda and M. Shibutani, Tetrahedron Lett., 1986,27, 2467;(二)J.Ojima、E. Ejiri、T. Kato、M. Nakamura、S. Kuroda、S. Hirooka 和 M. Shibutani、.I.Chem. SOC., 珀金译.我,1987,831;(c)J. Ojima, S. Fujita, M. Masumoto, E. Ejiri, T. Kato, S. Kuroda, Y. Nozawa and H. Tatemitsu, J. Chem. Soc., Chem. Commun., 1987, 534;(d) J. Ojima, S. Fujita, M. Masumoto, E. Ejiri, T. Kato, S. Kuroda, Y. Nozawa, S. Hirooka, Y. YoneyamaandH.Tatemitsu, J.Chem.Soc.,Perkin Trans. I, 1988,385.4 J. Ojima, T. Hashimoto, J. Katsuyama, H. Miyashita, S. Fujita, S. Kuroda, Y.Kano 和 G. Yamamoto, J. Chem. Sac.,Perkin Trans. I, 1990,333.5 G.Yamamoto、H. Higuchi、Y. Takai 和 J. Ojima,Chem. Lett.,1992 年,第 857 页;H. Higuchi, K. Asano, K. Nakafuku, Y. Takai, J. Ojima and G. Yamamoto, J. Chem. SOC.,Perkin Trans. I, 1993,89.6 P. J. Garratt, Aromaticity, Wiley, New York, 1986, p. 218;A. T. Balaban、M. Banciu 和 V. Ciorba, Annulenes, Benzo-, Hetero-, Homo-Derivatives and Their Valence Isomers, CRC Press, Florida, 1988, vol. 111, p. 1.7 L. G. Donaruna 和 W. L. Heldt, Org. React., 1960,11, 1.8 L. M. Jackman 和 S. Sternhell,《核共振光谱在有机化学中的应用》,佩加蒙,伦敦,1969 年,第 280-304 页。9 A.R.卡特里茨基、M.卡雷尔森和N.马尔霍特拉,《杂循环》,1991年,第32页,第127页。10 G. Yamamoto、H. Higuchi、H. Yamamoto 和 J. Ojima,公牛。化学 SOC.Jpn, 1992,65,2388.J. CHEM. SOC. PERKIN 译.I 1993 11 D. A. Kleier 和 G. Binsch,QCPE 计划第 165 号。12 M. Nakagawa, Pure Appl. Chem., 1975,44, 885.13 见P.J.Garratt和K.Grohmann,载于Houhen-WeyI,Methoden der Organischen Chemie,Thieme Verlag,斯图加特,1972年,第五卷,同上,第533-535页。论文21064226 1992年12月1日收稿 1993年1月19日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号