首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Photoinduced transformations. Part 38. Photoreactions of 17-ethoxycarbonylmethylene-etiojerva-5,13(17)- and -5,16-diene-3β,11β,20ξ-triol 3,20-diacetate 11-nitrites
【24h】

Photoinduced transformations. Part 38. Photoreactions of 17-ethoxycarbonylmethylene-etiojerva-5,13(17)- and -5,16-diene-3β,11β,20ξ-triol 3,20-diacetate 11-nitrites

机译:光诱导转化。第 38 部分。17-乙氧羰基亚甲基-etiojerva-5,13(17)-和-5,16-二烯-3β,11β,20ξ-三醇-3,20-二乙酸酯-11-亚硝酸盐的光反应

获取原文
获取外文期刊封面目录资料

摘要

J.C.S. Perkin I Photoinduced Transformations. Part 38.l Photoreactions of 17-Ethoxycarbonylmethylene-etiojerva-5,13(17)-and -5,16-diene-3@,1 I@,205-triol 3,20-Diacetate II-Nitrites By Hiroshi Suginome," Sanji Sugiura, Norihisa Yonekura, Tadashi Masamune, and Eiji Osawa, Depart-ment of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan Photolysis of one of the title nitrites (5) in benzene with a Pyrex-filtered light afforded a complex mixture in- cluding as major products 1 7-ethoxycarbonylmethylene-etiojerva-5,13( 17)-diene-3P.I 1 P.20t-triol 3.20-diacetate (4). 17-ethoxycarbonylmethylene-I 1a-aza-c-homoetiojerva-5,8,1 I,12( 14),13(17)-pentaene-3~,20~-diol3.20-diacetate 11 a-oxide (6). and 17-ethoxycarbonylmethylene-11 a-aza-c-homoetiojerva-5.11 a,l3(17) -triene- 3p.11 a.20E-triol 3.20-diacetate 11 a-oxide (7) ; in contrast, photolysis of N-acetyl-(22S,25S)-5a-veratr-l3(17)-enine-3P.11 P.23P-triol 3.23-diacetate 11 -nitrite (1 ) having a 1 2a-hydrogen is known to give (22S,25S)-N-acetyl- 11a-aza-c-homo-5a-veratr-I 1 a.l3(17)-diene-3~.11 a,23p-triol 11 a-oxide (2) as the sole product.The formation of the nitrone (7) having an a-oriented hydroxy-group supports the mechanism of the rearrangement previously pro- posed. An estimation by an empirical force-field method with a model hydrocarbon indicates that the five- membered ring of the nitrite (5) is more strained than that of the nitrite (1) by ca. 6 kcal mol-'. Thus, the difference in the prodllcts obtained from the nitrites (I) and (5) may be attributable to a difference in the polar effects of the C-17-substituents which influence the degree of stabilization of the polar transition state.The result of the photolysis of 17-ethoxycarbonylmethylene-etioJerva-5,16-diene-3~,11P,ZOE-triol 3.20-di- acetate 11 -nitrite (1 0) is also described. WE have previously reported the formation of an a-hydroxy nitrone (2) via photoinduced rearrangement of a steroidal cyclopentyl nitrite (1). On the basis of several pieces of experimental evidence,26pc the re-arrangement was shown to proceed via the pathway depicted in Scheme 1. An interesting feature of this photorearrangement was its stereo- and regio-selectivities. Thus, in this photo-rearrangement, a single nitrone with an a-oriented 1l-hydroxy-group was produced exclusively and no product derived from the nitroso-aldehyde (E) formed by combination between NO and the C-17 end of the ally1 radical (B), was obtained.An alternative mode of the nitrone formation, which involved an intra-molecular migration of 12a-hydrogen of the nitroso- aldehyde (C) to the formyl carbonyl, was excluded on the basis of the result of the cross-over experiments with unlabelled and 15N-labelled nitrites2" In connection with this pathway, we were interested in a problem of how the configuration of the C(12)-H of Part 37, H. Suginome, N. Yonekura, T. Mizuguchi, and T. Masamune, Bull. Chem. SOC.Japan, 1977, 50, 3010. the nitrite (1) influences the products and their stereo- chemistry in this photoreaction. In the present study, the photolysis of the title nitrite (5), which has truns- fused hydrind-6-en-1-01 nitrite part structure (F), is described. The result is compared with that in the photolysis of the nitrite (1)with cis-fused hydrind-6-en- 1-01 nitrite unit (H) reported previously.2 The photo- lysis of the related nitrite having trans-fused hydrind- 5-en-1-01 part structure (G) is also described.RESULTS Preparations and Photolysis of the Nitrites (5) and (10) (Schemes 2 and 3).-The C-12epimer of the nitrite (1) is not easily accessible and 17-ethoxycarbonylmethylene-etiojerva-5,13( 17)-diene-3P, 1lp,20t-triol 3,20-diacetate 1l-nitrite (5), which possessed the required structural unit (F),was chosen as the model since the parent triol (3) has 2 (a) H.Suginome, N. Sato, and T. Masamune, Tetrahedron Letters, 1969, 3353; Tetrahedron, 1971,27, 4863; (b)H. Suginome,T. Mizuguchi, and T. Masamune, J.C.S. Chem. Comm., 1972, 376; H. Suginome, T. Mizuguchi, S. Honda, and T. Masamune, J.C.S. Perkin I, 1977, 927; (c) H. Suginome. T. Mizuguchi, and T. Masamune, Tetrahedron Letters, 1971, 4723; J.C.S. Perkin I, 1976, 2365. 1978 613 h hv365nm-fi -*a@ AcO Ac 0 (1 1 (A) *NO -I caged (E1 0- (2 SCHEME1 already been prepared from jervine via 10 steps.3 Partial acetylation of the trio1 (3), obtained by the reported proced~re,~with acetic anhydride and pyridine at room temperature afforded the 3,20-diacetate (4), m.p.144-146 "C. The electron-impact mass spectrum of the di- acetate (4) exhibited no molecular ion. However, two distinct fragment ions at nz/e 414 (41) and 354 (lOO~o), due to elimination of one and two acetic acid units from the molecular ions, were observed. Kitrosation of the diacetate (4) by the usual method afforded an amorphous ll-nitrite (5). The nitrite (5) in benzene was photolysecl with a Pyrex-filtered light gener- ated by a 100 W high-pressure Hg arc until photodecom- position was complete. In contrast to the 12a-nitrite the photoreaction of the 12P-nitrite (5) was found to result in a complex mixture of several products as revealed by t.1.c. Separation of the products by extensive preparative t.1.c. afforded the parent Ilp-01 (4) (12:4,), compound, (6) (6y0), and compound (7) (6) in the order of decreasing mobilities in t.1.c.together with several minor ill-defined products. In a mobile fraction, a product having various spectral properties attributable to the corresponding 1l-ketone was obtained. However, the structure was not completely confirmed because of lack of material. The electron-impact mass spectrum of the product (6), m.p. 132-135 "C, exhibited a molecular ion peak at im/e 483. The i.r. spectrum has shown a broad band due to OAc and ester group at 1 738 cm-l but no absorption due to the presence of a hydroxy-group. The U.V. spectrum of the product (6) in ethanol exhibited an intense maximum at 206 nm (E 12 700) and two maxima at 266 nm (E 6 590) and 294 nm (E 7 760) with inflection at 304 nm.These absorptions are ascribable to a substituted pyridine N-oxide chromophore. This spectral evidence together with the following 1i.m.r. spectrum supported by double-irradiation studies were in agreement with the pyridine N-oxide structure (6) : apart from the signals due to 3a-H, 3-OAc, 20-OAc, 20E-H, 18-H, 19-H, and CO,Et, the n.m.r. spectrum of the product (6) exhibited three characteristic signals. One of them appeared at T 1.53 as a sharp 1H singlet. The chemical shift corresponds to ar-H of a pyridine N-oxide nucleus. Another 1H signal at 7 4.32 is assignable to the C-6 olefinic proton. The shape of this signal differed from that for the 6-H of A5-steroids and appeared as a diffuse triplet.This suggested a change of conformation of the B-ring in going from the nitrite (1) to the product (6). The third distinct signal appeared as a broad 2H singlet at T 6.74. By double-irradiation studies it was confirmed that these signals are due to 7ar-and 7P-H. Thus, ir- radiation of the 6-H signal caused a change of the broad singlet at T 6.74 to a singlet (Wt 4.5 Hz). On the other hand, irradiation of the broad signal at T 6.74 decoupled T. Masamune, A. Murai, and S. Numata, Tetrahedron, 1969, 25, 3145; T. Masamune and T. Orito, Bull. Chem. SOC.Japan, 1972, 45, 1888. J.C.S. Yerkin I the diffuse triplet at T 4.32 to give a sharp singlet. These double-irradiation studies proved that the signals at T 4.32 and 6.74 are coupled, the latter being assigned to 7a and 7P-H and thus supporting our assignment of the signal at T 4.32.Moreover, the irradiation at T 7.48 caused changes of the diffuse triplet at T 4.32 and the singlet at T 6.74 to a clear triplet (J = 3.6 and 3.6 Hz) and a clear doublet (J = 3.6 Hz) respectively. This indicated weak allylic coupling between 4-H and 6-H and homoallylic coupling between 4-H and 7-H. Further, it gave the coupling constants of Js,,tLand Js.,B as 3.6 Hz. The other signals in the n.m.r. spectrum of the product (6) are shown in Table 1. The mass spectral fragmentation pattern fully supported the assigned structure (6). The spectrum exhibited distinct fragment ion peaks at m/e 467 (660,/,), 407 (42y0), 352 (39), and 149 ( 109yo).The peak at m/e 467 is due to the loss of hV benzenei 0-0-(6) (7) + (Ll SCHEME2 oxygen from the molecular ion which is one of the mass spectrometric features of aromatic N-o~ides.~ The peak at m/e 407 is the one which corresponds to the loss of oxygen and acetic acid from the niolecular ion. The u.v., ix., mass, and n.m.r. spectra of the product (7) were fully in accord with an a-hydroxy-nitrone structure corresponding to the nitrone (2). Thus, in the U.V. spectrum of the product (7) in ethanol there were two maxima at 215 (E 6 600) and 294 (E 10 800). In its i.r. spectrum, the product (7) sliowetl a broad band at around 3 400 cm-' due to an associated OH ant1 a band at 1 740 H. Budzikiewicz, C.Djerassi, and 11. H. Williams, ' Mass Spectrometry of Organic Compounds,' Holden--Day, Inc., San Francisco, 1967, p. 388. 1978 615 cm-l due to OAc and C0,Et. The signal positions and the molecular ion peak but fragment ions at m/e 412 (M' -coupling constants of the n.m.r. spectrum are shown in 2MeC0,H) (15.3), 352 (52.4), and 178 (100). The Table 1. The ll-H signal appeared as a broad doublet at last two fragment ions are represented as (a) and (b) T 5.10 with J = 7.5 Hz. Irradiation at T 8.1 caused a (Scheme 4). collapse of this signal to a singlet. This defined the Nitrosation of the diacetate (9) afforded an oily nitrite TABLE 1 Chemical shifts (T) values and coupling constants (Hz) of protons in the etiojervanes and the photoproducts lla-H or 7a-and 1lP-H or 3a-I1 6-H 7P-H ll-H 16-H 18-H 19-H 20-H OAC OEt 6.46 (s) 4.72(bs) a 5.62 * a 8.03 (s) 8.70 (s) 4.95 (s) 5.75 (q),8.71 (t)J = 7.2 HZ 6.50 (bs) 4.72 (bs) a 5.70 (ni) U 8.07 (s) 8.65 (s) 4.94 (s) 5.75 (q),8.65 (t)J=7Hz ca.4.67 (bs) a ca. 5.57 t a 8.02 (s) 8.70 (s) 4.09 (s) 7.84 (s), 5.78 (q),8.74 t) 5.45 (bs) 7.95 (s) J = 7.2 H 5.41 (bs) 4.65 (bs) a 3.68 (t) a 8.27 (s) 8.88 (s) 4.12 (s) 7.85 (s), 5.78 (q),8.68 It) J = 7.5 HZ 7.97 (s) J = 7.2 HZ 5.33 (bs) 4.32 (bt) 6.74 (bs) : 1.53(s) a 7.65 (s) 8.51 (s) 3.85 (a) 7.78 (s), 5.81 (q),8.71 (t)7.90 (s) J= 7.2 HZ 5.35 (bs) 4.54(bs) a 5.10 (bd) $ a 7.68 (s) 8.82 (s) 3.99 (s) 7.84 (s), 5.76 (q),8.71 (t) 7.95 (s) J = 7.2 HZ a a a U a 7.33 (s) 8.85 (s) 3.68 (s) 7.82 (s), 5.74 (q),9.82 (t)J = 7.2 HZ 6.49 (bs) 4.72 (bs) a * 4.11 (bs) 8.82 (d) 8.71 (s) 5.35 (s) 7.95 (s) 5.76 (q),8.74 (t) J = 6.9Hz J = 7.2 HZ 6.50 (bs) 4.75 (bs) a 5.70 (m) 4.11 (bs) 8.82 (d) 8.72 (s) 5.36 (s) 5.76 (q),8.72 (t)J = 6Hz J = 7.2 HZ 5.35 (bs) 4.69 (bs) a * 4.02 (bs) 8.76 (d) : 8.67 (s) 4.45 (s) 7.81 (s), 5.78 (q),8.71 (t) $ (W, = 12.0) J = 6.9 HZ 7.93 (s) J = 7.2 HZ 5.41 (bs) 4.68(bs) a 3.83 (bt) 4.01 (bs) 8.99 (d) 8.90 (s) 4.49 (s) 7.82 (s), 5.81 (q),8.71 (t)J = 6.9 HZ 7.95 (s) J = 7.2 HZ 5.32 (bs) 4.53 (bs) a 3.95 (bd) 8.63 (d) : 8.89 (s) 4.45 (s) 7.81 (s), 5.77 (q),: 8.71 (t)$ J = 6.9 HZ 7.94 (s) J = 7.2 HZ a Unassignable.Data in literat~re.~ Data obtained in pyridine. * Coincided with ethoxy protons. t Coincided with 3u-H.:Confirmed by decoupling; see text on details of decoupling studies on compds. (8) and (9). chemical shift of 9a-H of the nitrone (7) as ca. t 8.1. The (10) which was photolysed by a procedure comparable to signal due to 19-H was found to shift 0.03 p.p.m. upfield in that used for the nitrite (5). In this case, two major and pyridine relative to deuteriochloroform. This behaviour several minor products were also produced. By preparative parallels that of the nitrones obtained previously.2a.b On t.l.c., two major products, 3p,20t-dihydroxy- 17-ethoxy- this basis, an a-configuration is assigned to the 1 1-OH carbonyImethylene-etiojen-a-5,16-dien-11-one 3,20-di-group of the nitrone (7). In the mass spectrum of the acetate (11) and the parent llp-01 (9) were obtained in 13 w benzene-t, SCHEME3 nitrone (7), the molecular ion was absent but prominent and 17 yields.The former was confirmed by a direct fragment ions at m/e 485 (Mf -H20),467 (M+-2H20) comparison with a specimen obtained by Jones oxidation (16), 407 (M+-2H20 -CH,CO,H) (97), and 352 of the llp-01 (9). (1000/,) were observed. An Estimation of the Difference of Steric Energy for the Partial acetylation of 17-ethoxycarbonylmethylene-etio-Five-membered Ring of the Nitrites (1) and (5) by a Force-jerva-5,16-diene-3@,1 lp,20<-triol (8) afforded the corres-field Method.-One of the most important factors which ponding 3,20-diacetate (9) (Scheme 3). influences the ease of p-scission of the ll-oxyl radicals The Inass spectrum of the diacetate (9) has shown no would be strain in the five-membered ring.An estimation has been made of the difference between the degrees of strain for the five-membered c-rings of 17-ethoxycarbonyl-methylene-etioJerva-5,16-diene-3p,1Ip,20-triol 3,20-di-acetate 1I-nitrite (5) and (22S,25S)-N-acetylveratr-13(17)-enin-llp-yl nitrite (1) by a force-field method. In order to calculate the difference, three models having structures C02Et (a) m/e 352 (b) m/e 178 SCHEME4 (24) were used. Examination of Dreiding models corresponding to the structures (12), (13), and (14) indicated that the c,D-rings of the C/D trans-structures (12) and (13) were rather rigid while in a model corresponding to structure (14) two major conformers (14a) and (14b) with Me , Me (12) 5a-H (14 1 (13) A5 (14b) regard to the C,D rings were possible.Thus, the conformer (14a) can undergo conformational conversion into an alternative conformer (14b) by inversion at C-16. In the * The possibility that the observed llp-01 was formed via a P-scission-recombination process is ruled out since it would lead to a more stable lla-01.' (a)N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Amer. Chem. Soc., 1971, 93,1637; (h)N. L. Allinger and J. T. Sprague, ibid., 1972, 94, 5734. J.C.S. Perkin I conformer (14a) the distance between 8P-H and 166-H is much closer than that in the conformer (14b). Allinger's force field was used in conjunction with pattern-research nULE 2 Calculated energies of moclel hydrocarbons * Sum of stcric energy components of Heat of C-8, -9, -11, -12 formation Strain energy and -14 (kcal mol-') (kcal Inol-l) (kcal mol-l) (12) --45.96 23.04 18.64 (13) .-19.50 24.32 20.83 (144 -48.72 20.28 14.97 (14b) -48.50 20.50 15.32 * Calculations were performed at the Hokksiclo Lhivcrsity Computing Centre.energy-minimization techriique to calculate tlie energies relevant to the present discussion ; these are shown in Table 2 DISCUSSION The foregoing experiments proved that the iiitrones with an a-oriented liydroxy-group at the a-position of the N-oxide group are formed in the photo-reaction of c-nor-D-homo-steroid 11p-01 nitrites with a 13(17) double-bond, irrespective of the 12-H configuration. This result is consistent with our proposed path for the nitrone formation depicted in Scheme 1.Namely, the cyclization of the nitroso-aldeliyde '(C) and/or (C') may lead to the formation of the intermediate D or D' with the a-oriented hydroxy-group since the presence of the lop-methyl may prevent the formation of a less stable intermediate with a p-oriented Iiydroxy-group.2b The present study has shown that, whereas photolysis of the llp-01 nitrite (1) resulted solely in p-scission of the oxyl radical to give the nitrone as the sole product, the 1lp-01 nitrite (5)afforded several products including, as major components, the parent 11p-ol, compound (8) with a pyridine N-oxide nucleus, and the nitrone (9).This contrast in the plioto-products is of interest since the formation of a significant amount of the llp-01 indicates that p-scission of 11p-oxyl radical generated from the nitrite (5) is more dificult than for the oxyl radical generated from the nitrite (l).* hlariy factors 879 may influence the relative ease of p-scission lo of the llp-oxyl radicals generated from tlie c/u cis-(1) and trans-nitrite (2). However, the most important ones would be the stabilities of both the ally1 radical and the product ketone generated, or of the transition state leading to them, and the degree of five-membered ring strain. IVith regard to the former 6 (a) E. 31. Engler, J. D. Ilndose, and P. v. I<. Sclileyer, J. Amev.Chem. Soc., 1973, 95, 8005; (h) J. D. Andose, and K. Illislow, ibid., 1974, 96, 2168. 7 N. Sat0 and T. Masamune, Tetvaliedvon I-ettevs, 1967, 1557; BdL. Clzenz. Soc. ,Japan, 1969, 42, 216. 8 C. Walling and A. I'adwa, J. Awier.. CAem. Soc., 1963, 85, 1593. 9 F. D. Greene, M. L. Sa.itz, 1'. D. Osterholtz, H. H. Lau, W. N. Smith, and P. A'I. Zanet, J. Oyg. Chent., 1963, 28, 55. 10 P. Gray and A. Williams, Chem. Rev., 1959, 59, 239. factor, the importance of polar effects in the transition state of p-scission has been noticed by Walling l1 and Kochi l2 and their colleagues. Of these factors, an estimation of the difference of the steric energy of the five-membered ring of etiojerva-5,13(17)-diene and 12ct-etiojerva-5,13(17)-dienewith the model systems by a force-field method indicated that the sum of steric energy components of the five-membered ring carbons of the C/D trans-isomer is some 6 kcal mol-l larger than that of the C/D cis-isomer. Thus, we should expect that provided that ring strain is the most im- portant factor for cleavage, since the nitrite (5) has a more strained five-membered ring, tf e 11,12-bond may cleave more easily than that of the nitrite (1).In fact, the reverse is found in the present exFeriments. -(B) -__t products en-1-01 nitrite system is not sufficient to cause p-scission of the oxyl radical generated. EXPERIMENTAL For instruments used and general procedures see Part 30.13 Preparation of 17-Ethoxycarbonylmethylene-etiojerva-5,13( 17)-diene-3p, 1lp,2O~-trioZ (3) and 17-Ethoxycarbonyl- methylene-etiojerva-5,16-diene-3~,11~,205-triol (8).-These compounds were prepared by a described 10-step pro- cedure from jervine.Preparation of 17-Ethoxycarbonylmethylene-etiojerva-5,13( 17)-diene-3p, lIp,205-triol 3,20-Diacetate (4) .-The trio1 (280mg) in pyridine (5ml) in the presence of acetic an- hydride (0.75ml) was stirred for 13 h at room temperature. The reaction mixture was worked up as usual to afford the In view of the complexity of the molecule3, with which we are dealing. the observed difference of the reactivities U' of two nitrites (1) and (5) cannot be attributed to any single factor. However, having excluded the factor of five-membered ring strain, the observed preference for opening of the five-membered ring of the nitrite (1) over that of the nitrite (5) might be chiefly ascribable to a difference in the degree of the stabilization of the ally1 radical intermediate (B) or of the transition state (J) leading to them.Thus, the difference in the products between the nitrites (1) and (5) may, perhaps, be rationalized in terms of the difference of the polar effectsl1?l2 of the C-17 substituents which influence the degree of stabilization of the polar transition state (Jb). The path which leads to formation of the product (6) is not easily explained, there being, at present, no evidence on which to base a mechanism. The product (6) is, however, most probably formed zkz dehydration and oxidation of the nitrone (7) during the photo- reaction and not simply during the work-up stage since the latter was stable at room temperature.The form- ation of a heteroaromatic AT-oxide analogous to the product (6) was not observed in the photoreaction of the nitrite (1). Although it is not clear why the pyridine N-oxide is formed, expecially in the photolysis of the nitrite (5),it is possible that the nitrone ring in the nitrite(s) is destabilized by the 17-substituent. The results of the photolysis of the nitrite (10) indicate that the strain in the five-membered ring of hydrind-5- l1 C. Walling and P. J. Wagner, J. Anaer. Chein. Snc., 1964, 86, 3368. l2 J. D. TSacha and J. K. Kochi, J. Org. Chem., 1965, 30, 3272. amorphous diacetate.This was recrystallized from ether- n-hexane to afford crystals of the diacetate (295mg), map. 144-146 "C (Found: C, 68.15; H, 8.1. C2,H3,0, requires C, 68.35; H, 8.05), vmx. 3 507 (OH) and 1721 and 1 744 cm-l (OAc, C0,Et); oiID2O -1141.7" c 0.83,(MeOH); n.m.r. data are given in Table 1. 17-Ethoxycarbonylmethylene-etiojerva-5,13( 17) -diene- 3p,1lp,20~-triol 3,20-Diacetate Nitrite (5).-The diacetate (196 mg) was dissolved in pyridine (3 ml) and nitrosyl chloride in pyridine was added dropwise at ca. -20 "C. The progress of the reaction was monitored by t.1.c. The solution was poured into water and the nitrite was extracted with methylenedichloride. The methylene dichloride solu- tion was washed with water three times and dried (Na,SO,).The solvent was removed by rotary evaporator at room temperature to yield an amorphous nitrite (226mg) which was immediately subjected to photolysis, vmaX.(CHCl,) 1 735br (OAc, C02Et), 1644,and 824 cm-1 (ONO); n.m.r. data are given in Table 1. PhotoZysis of the Nitrite (5).-The nitrite (352 mg) dis-solved in dry benzene (15.5ml) was subjected to photolysis with 100 W high-pressure Hg arc lamp, through Pyrex, under nitrogen. The progress of the reaction was monitored by t.1.c. (Spots due to the nitrite were detected by diphenylamine-sulphuric acid.) All the nitrite decomposed after 9.5 h and the solvent was removed by a rotary evapor- ator at room temperature to afford a complex mixture of brown oily products (372 mg).This was subjected to preparative t.1.c. (solvent, benzene-ether 5 : 1). Seven fractions A-G were obtained in the order of decreasing mobilities on t.1.c. The most mobile fractions A (18mg) and B (14mg) were not identified. The fraction C (43mg) l3 H. Suginome, T. Tsuneno, N. Sato, N. Maeda, T. Masamune, H. Shimanouchi, Y. Tsuchida, and Y. Sasada, J.C.S. Perkin I, 1976, 1297. was purified again by t.1.c. to afford two fractions (C, and C,). The more mobile fraction C, (8 mg) was not identified. The i.r. and n.ni.r. spectra suggested that the amorphous compound C, (6) (11 mg) was probably the corresponding ll-ketone but this was not confirmed. Fraction D (67 mg) was a mixture of several minor compounds and none of the compounds was identified.Fraction E (157 mg) was a mixture of the N-oxide (6), the 11/3-01 (4), and the nitrone (7). The mixture was subjected to preparative t.1.c. twice, and three compounds, (6) (21 mg), (4) (41 mg), and (6) (20 mg) were obtained in order of decreasing mobilities. The N-oxide (6) was recrystallized from ether to yield an analy- tical specimen, m.p. 132-135 "C (Found: C, 66.6; H, 7.0; N, 2.8. C27H36NO7 requires C, 66.8; H, 7.3; N, 2.9). The 11/3-01 was recrystallized from ether. The nitrone (7) was recrystallized from ether to yield an analytical specimen, m.p. 128-132 "C (Found: C, 63.8; H, 7.6; N, 2.6. C,,H,,NO, requires C, 64.1; H, 7.8; N, 2.8). Fraction F (29 mg) and fraction G (75 mg) were complex mixtures and were not identified.Preparation of 3/3,20-Dihydroxy- 17-ethoxycarbonyl- methyZene-etiojerva-5,16-dien-1 1-one, 3,20-Diacetate ( 1 1).-Jones reagent was added dropwise to the 3,20-diacetate (9) (51 mg) in acetone (3 ml). Excess of chromic acid was decomposed with 5 sodium hydrogensulphite and the solution was extracted with ether. The ethereal solution was twice washed with water and dried (Na2S0,). After removal of the solvent, the residue (49 mg) was purified by preparative t.1.c. and recrystallized from n-hexane-ether to afford the ketone (11) (11 mg), m.p. 167-169 "C (Found: C, 68.45; H, 7.75. C27H3@7 requires C, 68.6; H, 7.7y0), vmaX. 1740br cm-l (CO,Et, five-membered ring ketone and OAc); n.m.r. data are given in Table 1. Preparation of 17-Ethoxycarbonylmethylene-etiojerva-5,16-diene-3/3, 11(3,20-lrioZ 3,20-Diacetate (9) .-The trio1 (349 mg) in pyridine (8 ml) in the presence of acetic anhydride J.C.S.Perkin I (1.0 ml) was stirred for 12 h at room temperature. The reaction mixture was worked up to afford a crude diacetate. This was recrystallized from ethyl acetate-n-hexane to afford the diacetate (117 mg) as the first crop, n1.p. 141- 143 "C (Found: C, 68.35; H, 8.1. C2,H3,0, requires C, 68.35; H, 8.05), v,,,. 1 735 (C0,Et and OAc) and 3 527 cm-' (OH); aID2O -140.2" (c, 0.90, methanol); n.m.r. data are given in Table 1. 17-Ethoxycarbonylrnethylene-etiojerva-5,16-diene-3/3, 1 1/3,20~-trioZ 3,20-Diacetate Nitrite (10).-The diacetate (265 mg) in pyridine (5 ml) was nitrosated as for the iso- meric 3,20-diacetate.An oily nitrite (283 mg) obtained was immediately subjected to photolysis; n.m.r. data are given in Table 1. PhotoZysis of the Nitrite (lo).-The nitrite (283 mg) in dry benzene (13.0 ml) was subjected to photolysis under the same conditions as those for the isomeric nitrite (5). All the nitrite decomposed after 7.5 h. Removal of the solvent left a residue. T.1.c. of the product indicated that it was a mixture of several products including two major products. This was subjected to preparative t.1.c. (solvent, benzene-ether 3 : 1). Six fractions A-F were obtained in order of decreasing mobilities. The most mobile fraction A (34 mg), once purified by preparative t.l.c., was recrystallized from ether-n-hexane to yield the ll-ketone (6 mg), m.p. 160-163 "C. Fraction B (44 mg) was again purified by preparative t.1.c. and recrystallized from n-hexane-ether to yield the Ilp-01 (2 mg). Fractions C (24 mg), D (32 mg), E (18 mg), and F (65 mg) were a complex mixture of unidentified compounds. We thank Mrs. Tomoko Okayama for the measurements of 100 MHz n.m.r. spectra and the spin decoupling studies. 7/988 Received, 10th June, 19771
机译:J.C.S. Perkin I 光诱导转化。第 38 部分 l 17-乙氧羰基亚甲基-etiojerva-5,13(17)-和 -5,16-二烯-3@,1 I@,205-三醇 3,20-二乙酸酯 II-亚硝酸盐 作者:Hiroshi Suginome,“Sanji Sugiura、Norihisa Yonekura、Tadashi Masamune 和 Eiji Osawa,北海道大学理学院化学系,札幌 060,日本 用耐热玻璃滤光在苯中光解一种标题亚硝酸盐 (5),得到复杂的混合物,包括主要产物 1 7-乙氧羰基亚甲基-etiojerva-5,13( 17)-二烯-3P.I 1 P.20t-三醇 3.20-二乙酸酯 (4).17-乙氧羰基亚甲基-I 1a-氮杂-c-高硫代-5,8,1 I,12( 14),13(17)-戊烯-3~,20~-二醇3.20-二乙酸酯 11 a-氧化物 (6).和17-乙氧羰基亚甲基-11 a-氮杂-c-同质硫代-5.11 a,l3(17)-三烯-3p.11 a.20E-三醇 3.20-二乙酸酯 11 a-氧化物 (7) ;相反,已知将N-乙酰基-(22S,25S)-5a-veratr-l3(17)-烯-3P.11 P.23P-三醇3.23-二乙酸酯11-亚硝酸盐(1)光解得到(22S,25S)-N-乙酰基-11a-氮杂-c-高-5a-veratr-I 1 a.l3(17)-二烯-3~.11 a,23p-三醇11 a-氧化物(2)作为唯一产物。具有 a 取向羟基的硝基 (7) 的形成支持了先前提出的重排机制。使用模型烃的经验力场法进行的估计表明,亚硝酸盐(5)的五元环比亚硝酸盐(1)的五元环应变大,约为6 kcal mol-'。因此,从亚硝酸盐(I)和(5)中获得的产物的差异可能归因于影响极性过渡态稳定程度的C-17取代基的极性效应的差异。还描述了17-乙氧羰基亚甲基-etioJerva-5,16-二烯-3~,11P,ZOE-三醇3.20-二乙酸酯11-亚硝酸盐(1 0)的光解结果。我们之前曾报道过通过甾体环戊基亚硝酸盐的光诱导重排形成 α-羟基硝基 (2)(1)。根据几项实验证据,26pc 显示重新排列是通过方案 1 中描述的途径进行的。这种光重排的一个有趣特征是它的立体和区域选择性。因此,在这种光重排中,仅产生具有 a 取向 1l-羟基的单个硝基,并且没有获得由 NO 和 ally1 自由基 (B) 的 C-17 端结合形成的亚硝基醛 (E) 衍生的产物。根据未标记和 15N 标记的亚硝酸盐的交叉实验结果,排除了硝基形成的另一种模式,该模式涉及亚硝基醛 (C) 的 12a-氢向甲酰羰基的分子内迁移2“ 关于该途径,我们对第 37 部分的 C(12)-H 的构型如何的问题感兴趣, H. Suginome、N. Yonekura、T. Mizuguchi 和 T. Masamune,公牛。化学SOC.日本, 1977, 50, 3010.亚硝酸盐 (1) 在这种光反应中影响产物及其立体化学性质。在本研究中,描述了标题亚硝酸盐(5)的光解,其具有Truns-熔融氢化氢-6-烯-1-01亚硝酸盐部分结构(F)。将结果与先前报道的具有顺式熔融氢化氢化-6-烯-1-01亚硝酸盐单元(H)的亚硝酸盐(1)中的光解结果进行了比较.2还描述了具有反式熔融氢化氢化-5-烯-1-01部分结构(G)的相关亚硝酸盐的光解。结果 亚硝酸盐(5)和(10)的制备和光解(方案2和3).-亚硝酸盐(1)的C-12差向异构体不易获得,17-乙氧羰基亚甲基-etiojerva-5,13(17)-二烯-3P,1lp,20t-三醇 3,20-二乙酸酯 1l-亚硝酸盐(5),具有所需的结构单元(F),被选为模型,因为母体三醇(3)具有2(a)H.Suginome, N. Sato 和 T. Masamune,Tetrahedron Letters,1969 年,3353;四面体, 1971,27, 4863;(b)H. Suginome、T. Mizuguchi 和 T. Masamune, J.C.S. Chem. Comm., 1972, 376;H. Suginome、T. Mizuguchi、S. Honda 和 T. Masamune,J.C.S. Perkin I,1977 年,927 年;(c) H. Suginome。T. Mizuguchi 和 T. Masamune,Tetrahedron Letters,1971 年,4723 页;J.C.S. Perkin I,1976 年,2365 年。1978 613 h hv365nm-&fi -*a@ AcO Ac 0 (1 1 (A) *NO -I 笼 (E1 0- (2 SCHEME1 已经通过 10 个步骤从 jervine 制备。3 三醇1(3)的部分乙酰化反应,由报道的处理~re,~在室温下用乙酸酐和吡啶得到3,20-二乙酸酯(4),m.p.144-146“C。二乙酸盐(4)的电子冲击质谱没有显示分子离子。然而,由于从分子离子中消除了1个和2个乙酸单元,在nz/e 414(41%)和354(lOO~o)处观察到两个不同的碎片离子。通过通常的方法对二乙酸酯 (4) 进行 Kitrosing,得到无定形的 ll-亚硝酸盐 (5)。苯中的亚硝酸盐 (5) 用 100 W 高压汞弧产生的 Pyrex 过滤光进行光解,直到光分解完成。与 12a-亚硝酸盐相比,发现 12P-亚硝酸盐 (5) 的光反应导致几种产物的复杂混合物,如 t.1.c 所示。通过广泛的制备t.1.c分离产物提供母体 Ilp-01 (4) (12:4,)、化合物 (6) (6y0) 和化合物 (7) (6%) 在 t.1.c. 中按迁移率递减的顺序以及几个次要的不明确产物。在流动馏分中,获得了可归因于相应 1l-酮的具有各种光谱特性的产物。然而,由于缺乏材料,结构尚未完全确认。产物(6)的电子撞击质谱,熔点132-135“C,在im/e 483处表现出分子离子峰。i.r.在1 738 cm-l处,由于OAc和酯基,光谱显示出宽带,但由于羟基的存在而没有被吸收。产物(6)在乙醇中的紫外光谱在206 nm(E 12 700)处表现出强烈的最大值,在266 nm(E 6 590)和294 nm(E 7 760)处表现出两个最大值,在304 nm处出现拐点。这些吸收可归因于取代的吡啶 N-氧化物发色团。该光谱证据以及以下 1i.m.r.双辐照研究支持的光谱与吡啶N-氧化物结构一致(6):除了3a-H、3-OAc、20-OAc、20E-H、18-H、19-H和CO,Et的信号外,产物(6)的n.m.r.光谱表现出3个特征信号。其中一个出现在 T 1.53 处,作为锋利的 1H 单线。化学位移对应于吡啶 N-氧化物原子核的 ar-H。7 4.32 处的另一个 1H 信号可分配给 C-6 烯烃质子。该信号的形状与A5类固醇的6-H不同,表现为弥漫性三联体。这表明B环的构象从亚硝酸盐(1)到产物(6)发生了变化。第三个不同的信号在T 6.74处表现为宽阔的2H单线态。通过双重辐照研究,证实这些信号是由 7AR 和 7P-H 引起的。因此,6-H信号的辐照导致T 6.74处的宽单线态变为单线态(Wt 4.5 Hz)。另一方面,在 T 6.74 处照射宽信号使 T. Masamune、A. Murai 和 S.沼田,四面体,1969,25,3145;T. Masamune 和 T. Orito,公牛。化学SOC.日本, 1972, 45, 1888.J.C.S. Yerkin I 在 T 4.32 处的漫反射三元组,以提供锋利的单峰。这些双辐照研究证明,T 4.32 和 6.74 处的信号是耦合的,后者被分配给 7a 和 7P-H,从而支持了我们在 T 4.32 处分配信号。这表明4-H和6-H之间的烯丙基偶联较弱,4-H和7-H之间的均烯丙基偶联。此外,它给出了Js,,tLand Js.,B的耦合常数为3.6 Hz。产品(6)的n.m.r.谱中的其他信号如表1所示。质谱碎裂图谱完全支持指定的结构 (6)。光谱在m/e 467 (660,/,)、407 (42y0)、352 (39%) 和 149 (109yo) 处表现出不同的碎片离子峰。m/e 467 处的峰值是由于分子离子中 hV 苯 0-0-(6) (7) + (Ll SCHEME2氧的损失,这是芳香族 N-o~ides 的质谱特征之一.~ m/e 407 处的峰值对应于镍离子中氧和乙酸的损失。产物(7)的u.v.、ix.、质量和n.m.r.谱图与硝基(2)对应的a-羟基硝基结构完全一致。因此,在 U.V.产物(7)的光谱在乙醇中有两个最大值,分别为215(E 6 600)和294(E 10 800)。在其 i.r. 光谱中,产物 (7) 在 1 740 H. Budzikiewicz、C.Djerasi 和 11 处的 OH ant1 处形成一条宽带,这是由于相关的 OH ant1 a 带。H. Williams,“有机化合物的质谱法”,Holden--Day, Inc.,旧金山,1967 年,第 388 页。1978 615 cm-l 由于 OAc 和 C0,Et.2MeC0,H)(15.3%)、352(52.4%)和178(100%)显示了m/e 412(n.m.r.谱的M'耦合常数)处的信号位置和分子离子峰但碎片离子。表 1.ll-H信号在最后表现为宽双峰,两个碎片离子表示为(a)和(b)T 5.10,J = 7.5 Hz。将此信号折叠为单线态。这定义了二乙酸酯的亚硝化作用 (9) 提供油性亚硝酸盐 表1 etiojervanes和光产物中质子的化学位移(T)值和耦合常数(Hz) lla-H或7a-和1lP-H或3a-I1 6-H 7P-H ll-H 16-H 18-H 19-H 20-H OAC OEt 6.46 (s) 4.72(bs) a 5.62 * a 8.03 (s) 8.70 (s) 4.95 (s) 5.75 (q),8.71 (t)J = 7.2 赫兹 6.50 (bs) 4.72 (bs) a 5.70 (ni) U 8.07 (秒) 8.65 (秒) 4.94 (秒) 5.75 (q),8.65 (t)J=7Hz ca.4.67 (bs) 约 5.57 t a 8.02 (秒) 8.70 (秒) 4.09 (秒) 7.84 (秒), 5.78 (q),8.74 [t] 5.45 (bs) 7.95 (秒) J = 7.2 H 5.41 (bs) 4.65 (bs) a 3.68 (t) 一个 8.27 (s) 8.88 (s) 4.12 (s) 7.85 (s), 5.78 (q),8.68 It) J = 7.5 HZ 7.97 (s) J = 7.2 HZ 5.33 (bs) 4.32 (bt) 6.74 (bs) : 1.53(s) a 7.65 (s) 8.51 (s) 3.85 (a) 7.78 (s), 5.81 (q),8.71 (t)7.90 (s) J= 7.2 HZ 5.35 (bs) 4.54(bs) a 5.10 (bd) $ a 7.68 (s) 8.82 (s) 3.99 (s) 7.84 (s), 5.76 (q),8.71 (t) 7.95 (s) J = 7.2 HZ a a a u a 7.33 (s) 8.85 (s) 3.68 (s) 7.82 (s), 5.74 (q),9.82 (t)J = 7.2 赫兹 6.49 (bs) 4.72 (bs) 一 * 4.11 (bs) 8.82 (d) 8.71 (s) 5.35 (s) 7.95 (s) 5.76 (q),8.74 (t) J = 6.9Hz J = 7.2 HZ 6.50 (bs) 4.75 (bs) a 5.70 (m) 4.11 (bs) 8.82 (d) 8.72 (s) 5.36 (s) 5.76 (q),8.72 (t)J = 6Hz J = 7.2 HZ 5.35 (bs) 4.69 (bs) a * 4.02 (bs) 8.76 (d) : 8.67 (秒) 4.45 (秒) 7.81 (秒), 5.78 (q),8.71 (吨) $ (W, = 12.0) J = 6.9 赫兹 7.93 (秒) J = 7.2 赫兹 5.41 (bs) 4.68(bs) 一 3.83 (bt) 4.01 (bs) 8.99 (d) 8.90 (s) 4.49 (s) 7.82 (s), 5.81 (q),8.71 (t)J = 6.9 HZ 7.95 (s) J = 7.2 HZ 5.32 (bs) 4.53 (bs) a 3.95 (bd) 8.63 (d) : 8.89 (s) 4.45 (s) 7.81 (s), 5.77 (q),: 8.71 (t)$ J = 6.9 HZ 7.94 (s) J = 7.2 HZ a Unassignable.Data in literat~re.~ 以吡啶获得的数据。* 与乙氧基质子相吻合。t 与3u-H.重合:通过解耦确认;有关COMPD脱钩研究的详细信息,请参阅文本。(8) 和 (9)。硝基 (7) 的 9a-H 的化学位移约为 t 8.1。(10)通过与19-H信号相当的程序进行光解,被发现在用于亚硝酸盐(5)的过程中向上场移动了0.03 p.p.m.。在这种情况下,两个主要和吡啶相对于氘代氯仿。这种行为还产生了几种次要产品。通过制备与先前获得的亚硝酸盐的制备相似性.2a.b On t.l.c.,两大产物,3p,20t-二羟基-17-乙氧基-在此基础上,将1,1-OH羰基亚甲基-etiojen-a-5,16-二烯-11-酮的3,20-二基团的硝基(7)分配。在13 w苯-t、SCHEME3硝基(7)中获得的醋酸盐(11)和母体llp-01(9)的质谱图中,分子离子不存在但突出,收率为17%。前者通过m/e 485 (Mf -H20)、467 (M+-2H20)与Jones氧化(16%)、407 (M+-2H20 -CH,CO,H)(97%)和llp-01 (9)的352的直接碎片离子比较得到证实。(1000/,)被观察到。17-乙氧羰基亚甲基-etio-五元环亚硝酸盐(1)和(5)部分乙酰化的空间能量差异的估计(1)和(5)通过力-jerva-5,16-diene-3@,1 lp,20<-triol (8)提供了相关场法.-积聚3,20-二乙酸酯(9)的最重要因素之一(方案3)。影响 ll-氧基自由基的 p-scission 的难易程度 二乙酸酯的 Inass 谱 (9) 显示在五元环中没有应变。采用力场法估算了17-乙氧羰基-亚甲基-etioJerva-5,16-二烯-3p,1Ip,20[-三醇3,20-二乙酸酯1I-亚硝酸盐(5)和(22S,25S)-N-乙酰羰基-13(17)-烯-烯-llp-基亚硝酸盐(1)的五元C环的应变度差异。为了计算差异,使用了三个具有结构C02Et&(a)m/e 352(b)m/e 178 SCHEME4(24)的模型。对结构(12)、(13)和(14)对应的Dreiding模型的检查表明,C/D反结构(12)和(13)的c,D环相当刚性,而在与结构(14)相对应的模型中,两个主要构象(14a)和(14b)与Me,Me(12)5a-H(14 1(13)A5(14b)关于C,D环是可能的。因此,构象(14a)可以通过在C-16处的反转进行构象转换为替代构象(14b)。在*中,排除了观察到的llp-01是通过P-剪切-重组过程形成的可能性,因为它会导致更稳定的lla-01。(a)N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Amer. Chem. Soc., 1971, 93,1637;(h)N.L.Allinger和J.T.Sprague,同上,1972年,第94页,第5734页。J.C.S. Perkin I 构象体 (14a) 8P-H 和 166-H 之间的距离比构象体 (14b) 中的距离要近得多。Allinger 力场与模式研究结合使用 nULE 2 莫克勒尔碳氢化合物的计算能量 * C-8、-9、-11、-12 形成的热量的 stcric 能量分量之和 应变能和 -14 (kcal mol-') (kcal Inol-l) (kcal mol-l) (12) --45.96 23.04 18.64 (13) .-19.50 24.32 20.83 (144 -48.72 20.28 14.97 (14b) -48.50 20.50 15.32 * 计算在Hokksiclo Lhivcrsity计算中心进行。能量最小化技术,用于计算与本讨论相关的能量;如表2所示 讨论 上述实验证明,在N-氧化物基团的a-位置具有a取向liydroxy-基团的iiitrones是在c-nor-D-homo-steroid 11p-01亚硝酸盐与13(17)双键的光反应中形成的,与12-H构型无关。该结果与我们提出的方案1中描述的硝基形成路径一致,即亚硝基醛酰胺'(C)和/或(C')]的环化可能导致中间体D或D'与a取向羟基的形成,因为落叶甲基的存在可能会阻止与p取向的Iiydroxy基团形成不太稳定的中间体.2b本研究表明, LLP-01 亚硝酸盐 (1) 的光解仅导致氧基自由基的 P 剪断,从而获得硝基作为唯一产物,而 1LP-01 亚硝酸盐 (5) 提供了多种产物,包括作为主要成分的母体 11p-醇、具有吡啶 N-氧化物核的化合物 (8) 和硝基 (9)。plioto产物中的这种对比是有趣的,因为大量llp-01的形成表明,亚硝酸盐(5)产生的11p-氧基自由基的p-scission比亚硝酸盐(l)产生的氧自由基更复杂。* HLARIY 因子 879 可能会影响 Tlie C/U 顺式 (1) 和反式亚硝酸盐 (2) 产生的 LLP-oxyl 自由基的 p-scission Lo 的相对容易程度。然而,最重要的因素是ally1自由基和产生的产物酮的稳定性,或导致它们的过渡态的稳定性,以及五元环应变的程度。IV关于前者 6 (a) E. 31.Engler、JD Ilndose 和 P. v. I<。Sclileyer, J. Amev.化学Soc., 1973, 95, 8005;(h) J.D.Andose和K.Illislow,同上,1974年,第96页,第2168页。7 N. Sat0 和 T. Masamune, Tetvaliedvon I-ettevs, 1967, 1557;BdL.克尔岑茨。日本, 1969, 42, 216.8 C. Walling 和 A. I'adwa, J. Awier..CAem。Soc., 1963, 85, 1593.9 F. D. Greene, M. L. Sa.itz, 1'.D. Osterholtz、H. H. Lau、W. N. Smith 和 P. A'I.扎内特,J.奥伊格。Chent., 1963, 28, 55.10 P. Gray 和 A. Williams,Chem. Rev.,1959 年,59 页,239 页。因素,极效应在p-scission过渡态中的重要性已被Walling l1和Kochi l2及其同事注意到。在这些因素中,用力场法估计了etiojerva-5,13(17)-diene和12ct-etiojerva-5,13(17)-diene五元环与模型体系的空间能量差异,表明C/D反式异构体的五元环碳的空间能量分量总和比C/D顺式异构体大约6 kcal mol-l。因此,我们应该预期,如果环应变是裂解的最重要因素,由于亚硝酸盐 (5) 具有更应变的五元环,tf e 11,12-键可能比亚硝酸盐 (1) 更容易裂解。事实上,在目前的解释中发现了相反的情况。-(B)-__t产物EN-1-01亚硝酸盐体系不足以引起氧自由基的p-断裂。实验 有关使用的仪器和一般程序,请参见第 30.13 部分 17-乙氧羰基亚甲基-etiojerva-5,13( 17)-二烯-3p、1lp,2O~-三氧Z (3) 和 17-乙氧羰基-亚甲基-etiojerva-5,16-二烯-3~,11~,205-三醇 (8) 的制备。将17-乙氧羰基亚甲基-etiojerva-5,13( 17)-二烯-3p,lIp,205-三醇3,20-二乙酸酯(4)的制备.-三氧基1(280mg)在吡啶(5ml)中,在乙酸酐(0.75ml)存在下,在室温下搅拌13 h。反应混合物像往常一样进行处理,以提供我们正在处理的分子的复杂性3。观察到的两种亚硝酸盐(1)和(5)的反应性U'的差异不能归因于任何单一因素。然而,在排除了五元环应变因素后,观察到的亚硝酸盐(1)的五元环开口优于亚硝酸盐(5)的开口,这可能主要归因于ally1自由基中间体(B)的稳定程度或导致它们的过渡态(J)的稳定性差异。因此,亚硝酸盐(1)和(5)之间产物的差异也许可以合理化为C-17取代基的极性效应l1?l2的差异,这些效应影响极性过渡态(Jb)的稳定程度。导致产物(6)形成的路径不容易解释,目前没有证据可以作为机制的基础。然而,产物(6)很可能是在光反应过程中形成的硝基(7)的zkz脱水和氧化,而不仅仅是在后处理阶段,因为后者在室温下是稳定的。在亚硝酸盐(1)的光反应中没有观察到类似于产物(6)的杂芳香族AT-氧化物的形成。虽然尚不清楚为什么会形成吡啶 N-氧化物,特别是在亚硝酸盐的光解 (5) 中,亚硝酸盐中的硝基环可能被 17-取代基破坏。亚硝酸盐的光解结果 (10) 表明,hydrind-5- l1 C. Walling 和 P. J. Wagner, J. Anaer 的五元环中的应变。切因。Snc., 1964, 86, 3368.l2 法学博士TSacha 和 J. K. Kochi, J. Org. Chem., 1965, 30, 3272.无定形双乙酸酯。这是由醚-正己烷重结晶得到二乙酸酯(295mg)的晶体,图。144-146“C(发现:C,68.15;H,8.1。C2,H3,0,需要C,68.35;H,8.05%),vmx。3 507 (OH) 和 1721 和 1 744 cm-l (OAc, C0,Et);[oiID2O -1141.7“ [c 0.83,(MeOH)]; n.m.r.数据见表1。 17-乙氧羰基亚甲基-etiojerva-5,13( 17)-二烯-3p,1lp,20~-三醇 3,20-二乙酸酯亚硝酸盐(5).-将二乙酸酯(196mg)溶于吡啶(3ml)中,并在约-20”C下滴加吡啶中的亚硝酰氯。反应进展由t.1.c监测。将溶液倒入水中,用二氯甲烷萃取亚硝酸盐。二氯甲烷溶液用水洗涤3次,干燥(Na,SO,)。在室温下通过旋转蒸发器除去溶剂,得到无定形亚硝酸盐(226mg),立即进行光解,vmaX。(CHCl,) 1 735br (OAc, C02Et), 1644 和 824 cm-1 (ONO);n.m.r.数据见表1。亚硝酸盐的光合(5).-将亚硝酸盐(352mg)溶解在干燥的苯(15.5ml)中,用100W高压汞弧灯在氮气下通过耐热玻璃进行光解。反应进展由t.1.c监测。(亚硝酸盐引起的斑点是通过二苯胺-硫酸检测到的。9后所有亚硝酸盐分解。5小时,在室温下用旋转蒸发器除去溶剂,得到棕色油状产物(372mg)的复杂混合物。这是受制于准备t.1.c。(溶剂,苯醚5:1)。7个馏分A-G按t.1.c的迁移率递减顺序获得。移动性最高的组分A(18mg)和B(14mg)未被鉴定。组分 C (43mg) l3 H. Suginome, T. Tsuneno, N. Sato, N. Maeda, T. Masamune, H. Shimanouchi, Y. Tsuchida, and Y. Sasada, J.C.S. Perkin I, 1976, 1297.再次被T.1.C纯化。提供两个分数(C 和 C)。移动性更强的组分C(8mg)未被鉴定。i.r. 和 n.ni.r.光谱表明,无定形化合物C,(6)(11mg)可能是相应的ll-酮,但这尚未得到证实。馏分D(67mg)是几种次要化合物的混合物,没有鉴定出任何化合物。馏分 E (157 mg) 是 N-氧化物 (6)、11/3-01 (4) 和硝基 (7) 的混合物。对混合物进行制备t.1.c。2次,3种化合物,(6)(21mg),(4)(41mg)和(6)(20mg)按迁移率递减的顺序获得。将N-氧化物(6)从乙醚中重结晶,得到分析样品,熔点132-135“C(发现:C,66.6;H,7.0;N,2.8。C27H36NO7要求C,66.8;H,7.3;N,2.9%)。11/3-01 由乙醚重结晶。硝基(7)从乙醚中重结晶,得到分析样品,熔点128-132“C(发现:C,63.8;H,7.6;N,2.6。C,,H,,NO,需要 C, 64.1;H,7.8;N,2.8%)。馏分 F (29 mg) 和馏分 G (75 mg) 是复杂的混合物,未被鉴定。将3/3,20[-二羟基-17-乙氧羰基-甲基Zene-etiojerva-5,16-二烯-1-酮,3,20-二乙酸酯(1,1)-Jones试剂的制备滴加到3,20-二乙酸酯(9)(51mg)的丙酮(3ml)中。过量的铬酸用5%亚硫酸氢钠分解,用乙醚萃取溶液。将空灵溶液用水洗涤两次并干燥(Na2S0,)。除去溶剂后,通过制备型t.1.c纯化残留物(49mg)。并由正己烷醚重结晶得到酮(11)(11mg),熔点167-169“C(发现:C,68.45;H,7.75。C27H3@7 要求 C,68.6;H, 7.7y0)、vmaX。1740br cm-l(CO,Et,五元环酮和OAc);n.m.r.数据见表1。在醋酸酐J.C.S.Perkin I(1.0ml)存在下,在吡啶(8ml)中制备17-乙氧羰基亚甲基-etiojerva-5,16-二烯-3/3,11(3,20[-lrioZ 3,20-二乙酸酯(9).-吡啶(8ml)中的三重奏(349mg)在室温下搅拌12小时。将反应混合物加以得到粗制的二乙酸。这是从乙酸乙酯-正己烷重结晶而来的,得到二乙酸酯(117毫克)作为第一种作物,n1.p。141- 143“C(发现:C,68.35;H,8.1。C2,H3,0,需要C,68.35;H, 8.05%), v,,,.1 735 (C0,Et 和 OAc) 和 3 527 cm-' (OH);[aID2O -140.2“ (c, 0.90, 甲醇); n.m.r.数据见表1。17-乙氧羰基亚乙烯-etiojerva-5,16-二烯-3/3,1 1/3,20~-三氧Z 3,20-二乙酸酯亚硝酸盐(10).-吡啶(5ml)中的二乙酸酯(265mg)与异构体3,20-二乙酸酯一样被亚硝化。立即对获得的油状亚硝酸盐(283mg)进行光解;n.m.r.数据见表1。亚硝酸盐的光合(lo).-将亚硝酸盐(283mg)在干燥的苯(13.0ml)中,在与亚硝酸盐异构体(5)相同的条件下进行光解。7.5 h后所有亚硝酸盐均分解。除去溶剂后留下残留物。该产品的T.1.c.表明它是几种产品的混合物,包括两种主要产品。这是受制于准备t.1.c。(溶剂,苯醚3:1)。按迁移率递减的顺序获得 6 个组分 A-F。通过制备型t.l.c.纯化后,将流动性最高的馏分A(34mg)从醚-正己烷中重结晶,得到ll-酮(6mg),m.p.160-163“C.组分B(44mg)再次通过制备t.1.c纯化。并由正己烷醚重结晶,得到Ilp-01(2mg)。组分 C (24 mg)、D (32 mg)、E (18 mg) 和 F (65 mg) 是未知化合物的复杂混合物。我们感谢 Tomoko Okayama 女士对 100 MHz n.m.r. 频谱的测量和自旋解耦研究。[7/988 收稿日期, 19771-06-10

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号