首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Methods of peptide sequencing. Part I. Conversion of oligopeptides into cyclic dipeptides: a gas chromatographic–mass spectrometric study
【24h】

Methods of peptide sequencing. Part I. Conversion of oligopeptides into cyclic dipeptides: a gas chromatographic–mass spectrometric study

机译:肽测序方法。第一部分 低肽向环状二肽的转化:气相色谱-质谱研究

获取原文
获取外文期刊封面目录资料

摘要

1975Methods of Peptide Sequencing. Part 1. Conversion of Oligopeptidesinto Cyclic Dipeptides : a Gas Chromatographic-Mass SpectrometricStudyBy Robert A. W. Johnstone. and T. Jeffery PovaII, The Robert Robinson LaboratoriesThe University, LiverpoolThe chemical degradation of oligopeptides to cyclic dipeptides and identification of the latter by gas chromato-graphy-mass spectrometry has been investigated as a method of amino-acid sequencing. Advantages anddisadvantages of the method are described.L69 3BXTHE transformation of peptides into cyclic dipeptides(dioxopiperazines) by pyrolysis, followed by identific-ation of the latter by g.1.c. has been suggested as amethod of amino-acid sequencing.l This method yieldsall possible ' sequential ' cyclic dipeptides from anoligopeptide but it is not yet clear whether misinform-ation can be generated by application of the vigorouspyrolytic conditions to peptides larger than the actino-mycins.We have examined an alternative acid-catalysed conversion of oligopeptides into cyclic di-peptides based on earlier limited examples in whichpeptides were heated with 2-naphthol or acetic acid.4As examples the tetrapeptide Leu-Gly-Gly-Leu gaveonly the cyclic dipeptide cy~Zo(-Leu-Gly-),~ and the tri-peptide Phe-Gly-Gly gave cycZo(-Phe-Gly-) .* There areother reports of the formation of cyclic dipeptides fromtripeptides and of their formation in pyridine from2,4,5-trichlorophenyl esters of tetrapeptides61 A. B. Mauger, Chem. Comm., 1971, 39.8 N. Lichtenstein, J .Amer. Chem. SOC., 1938, 60, 560.J. D. Baty, R. A. W. Johnstone, and T. J. Povall, J.C.S.N. F. Albertson and F. C. McKay, J . Amer. Chem. SOC., 1953,75, 5323; F. C. McKay and N. F. Albertson, ibid., 1967,79, 4686.Chem. Comm., 1973, 392.As an illustration of the procedure envisaged in thiswork, a tetrapeptide, ABCD, would be convertedsequentially into two cyclic dipeptides, AB and CD.Removal of the N-terminal amino-acid by the Edmanmethod would enable this unit to be identified and givea tripeptide, BCD, which could be converted into onecyclic dipeptide, BC. This method was suggested inessence many years ago but was not pursued becauseidentification of the components of the product mixturewas impossible at the time on the small scale required.However, the identification of cyclic peptides by g.1.c.-mass spectrometry provides a sensitive means of investi-gating such mixtures on a small scale and was used inthis work.The use of g.1.c. alone to identify cyclicdipeptides is not attractive because of the large numberof possible cyclic dipeptides (210 from the 21 commonamino-acids) . Use of relative retention times requiressynthesis of all possible cyclic dipeptides, not to mentionPeptides:Chemistry and Biochemistry, ed. B. Weinstein, Marcel Dekker,New York, 1970, pp. 419-434; J. C. Sheehan and D. N. Mc-Gregor, J . Amer. Cheon. SOC., 1962, 84, 3000; G. Lucente and P.Frattesi, Tetrahedron Letters, 1972, 42, 4285.6 I<. Titlestad, Chem. Comm., 1971, 1627.6 J.Meienhofer, Y . Sanq, and R. P. Pate1 iJ.C.S. Perkin Idiastereoisomers, and still does not guarantee a positiveidentification. Use of mass spectrometry with g.1.c.removes these difficulties.Several methods of converting peptides into cyclicdipeptides were examined by using the tetrapeptideVal-Gly-Leu-Phe as test material. The peptide washeated in (i) dimethylformamide (DMF), (ii) DMFcontaining phenol, (iii) DMF containing acetic acid,(iv) acetic acid alone, and (v) ethyl phosphorodichloriditein pyridine.' Only glacial acetic acid alone or in DMFproved successful. Thus, acidic catalysis is necessaryfor the sequential production of cyclic dipeptides, perhapsexpected cyclic dipeptides were observed (Table 1).However, unequivocal identification of the cyclic di-peptides is only possible through separation of theproducts by g.1.c.followed by mass spectrometry of theseparated components, and so g.1.c.-mass spectrometryof the O-trimethylsilyl derivatives of the cyclic peptideswas carried out (Table 2). Thus, the pentapeptideH-Gly-Leu-Leu-Gly-Gly-OH gave only one cyclic di-peptide, cycZo(-Gly-Leu-) , on treatment with glacialacetic acid. Edman degradation with phenyl isothio-cyanate enabled identification of the terminal glycine asthe corresponding phenylthiohydantoin (identified by00SCHEME 1by the mechanism shown in Scheme 1. Although acidicconditions are necessary, more strongly acidic conditions(HC1) degrade a peptide into amino-acids and smallpeptides but prevent cyclic dipeptide formation, probablyby protonation of the terminal amino-group.Additionalmass spectrometry), and gave a tetrapeptide, Leu-Leu-Gly-Gly. With acetic acid, this tetrapeptide gave twocyclic dipeptides, cycZo(-Leu-Leu-) and cycZo(-Gly-Gly-) .These, and similar experiments with other peptides, werecarried out on about 20 pmol of material and yields ofTABLE 1Degradation of peptides to cyclic dipeptides aPeptide b Cyclic dipeptides detectedAla-Phe-Leu cycle( -Ala-Phe-)cyclo (-Trp-Leu-)cyclo (-Leu-Phe-)Trp-Met-Asp(0Me) -Phe cyclo (-Trp-Met-)cycle-Asp (OMe) -Phe-Gly-Phe-Gln-G1 y-G1 y cycZo (-Gly-Phe-)cyclo (-Gln-Gly-)Gly-Pro-Trp-Leu C ~ C Z O ( -Gly-PrO-)Trp-Gly-Leu-Phe C ~ C Z O (-Trp-Gly-)Identifying ions in mass spectrum C44, 91, 114, 120, 128, 176, 21870, 83, 98, 111.154130, 29930, 77, 103, 130, 24391, 113, 120, 141, 169, 204, 26077, 130, 31791, 114, 120, 126, 167, 186, 232, 245, 27691, 113, 20484, 126, 168, 185a Identified by mass spectrometry of the mixture without g.1.c. separation. b For each peptide, the same experiment was repeatedm/e values; those italicised are on the peptide remaining after removal of the N-terminal amino-acid by the Edman method.molecular ions.TABLE 2Degradation of peptides to cyclic dipeptides aPeptide Cyclic dipeptide detected Identifying ions in mass spectrumGl y -L ys-Gl y C ~ C ~ O (-Gly-Lys-) 174,267,468,473Ala-T yr-Leu-Phe cyclo (-Ala-Tyr-) 179, 271, 436, 450Ser-Gly-Leu-Phe cycle( -Ser-Gly-) 103, 147, 267, 346, 360Ala-Glu(0Me) -Leu-Gly cyclo -Ala-Glu (OMe)Lys-Val-Phe-GI y cyclo (-Phe-Gly) 91, 229, 267, 333, 348G1 y-Leu-Leu-G1 y-Gly cyclo (-Leu-Gly-) See above0 Identified by mass spectrometry of g.1.c.separated components (trimethylsilyl derivatives).cycZo(-Leu-Phe-)cycZo(-Leu-Phe-) See abovecyclo (-Leu-G1 y-)267, 285, 313, 347, 389, 404241, 257, 326, 327, 343, 358166, 184. 257, 258, 271, 299, 341As Table 1.evidence for the sequential formation of cyclic dipeptidesis provided by the pentapeptide Elu-Gly-Pro-Trp-Leu, which has no free terminal amino-group and did notform any cyclic dipeptides.Our study of the conversion of peptides into cyclicdipeptides followed by mass spectrometry of the productmixture was encouraging, since ions due only to thecyclic dipeptides were about 50.Since these werereadily identifiable on this scale, the method appearedsuitable for use on a much smaller scale. All except oneof the simple peptides shown in Tables 1 and 2 behavedsimilarly to the above pentapeptide and no difficultieswere encountered.by J. M. Turner, Ph.D. Thesis, Cambridge, 1965.7 Personal communication from G. W. Kenner; original w-or1975 1299The first indication that the method might not begeneral, at least under the conditions used here, wasprovided by the tetrapeptide Lys-Val-Phe-Gly, fromwhich only the cyclic dipeptide, cycZo(-Phe-Gly-) wasidentified although presumably cyclo (-Lys-Val-) musthave been formed initially (Table 2). However, in thecases of two hexapeptides, H-Thr-Ala-Ile-Gly-Val-Gly-OH and H-Ala-Phe-Ile-Gly-Leu-Val-OH, none of theexpected cyclic dipeptides could be detected by g.1.c.-mass spectrometry.Similarly, the €3-chain of insulinyielded no identifiable cyclic dipeptides with aceticacid. Thus, the yields of cyclic dipeptides varied fromca. 50 down to 0. The reaction of a peptide withacetic acid afforded, in addition to cyclic dipeptides,brown materials which gave no peaks on g.1.c.-massspectrometry and are probably products of extensivedegradation and/or polymerisation. Mass spectrometryof the crude products at high temperature indicated thepresence of considerable amounts of high molecularweight material.For reference purposes, a variety of cyclic dipeptideswas synthesised, mostly by heating the methyl ester ofthe corresponding dipeptide.For g.l.c., the cyclicdipeptides were made less polar by conversion intotrimethylsilyl derivatives,g thereby allowing the morecomplex ones containing amino-acid residues such asserine, tyrosine, and lysine to be chromatographed aswell as those containing simpler amino-acids. Thepolarity of the cyclic peptides was also reduced by perme-t h y l a t i ~ n , ~ but the mass spectra of these permethylatedcompounds were inferior to those of the trimethylsilylderivatives for identification purposes.The mass spectra of several cyclic dipeptides have beenreported ; linear dipeptides gave mass spectradue to a combination of the spectra of the linear andcyclic dipeptides,1° the latter being formed in themass spectrometer.The mass spectra of the cyclicpeptides investigated here generally gave abundantmolecular ions; fragment ions at M - 28, Af - 29, andAf - 43 were sometimes but not invariably present andwere often of low abundance, in contrast with earliersuggestions.l0. l1 Similarly, fragment ions of the typeH,N=CHR (R = amino-acid side-chain), were often butnot always present (Scheme 2). With the exception ofthose containing proline, the cyclic dipeptides showedabundant fragment ions due to loss of the side-chain ofone of the amino-acid residues with or without hydrogentransfer. The loss of the side-chain of leucine, valine,or serine occurred so readily that no molecular ion, oronly one of very low abundance, was present (Scheme 2).For cyclic dipeptides containing aromatic side-chains,the major ions were due to the side-chains themselves,e.g. m/e 81 and 82 for histidine.In cyclic dipeptidescontaining tryptophan, the mass spectra showed littleelse than an ion at m/e 130 together with a molecularion. Lysine-containing cyclic dipeptides gave an ionA. B. Mauger, J . Chromatog., 1968,87, 315.G. Marino, L. Valente, R. A. W. Johnstone, F. Moham-madi-Tabrizi, and L. Sodini, J.C.S. Chem. Comm., 1972, 357.a t m/e 84, characteristic of lysine, as well as ions due toloss of NH, ; for glutamine-containing cyclic dipeptides,by far the most abundant fragment ion was produced byloss of NH, from the molecular ion. The mass spectra ofpermethylated cyclic dipeptides showed little or noimprovement over those of unmethylated ones.The mass spectra of trimethylsilylated cyclic dipep-tides were much more satisfactory.Apart from ions atm/e 73 and 75 from the trimethylsilyl group itself, thederivatives gave abundant molecular and M - 15 ions.Trimethylsilylated cyclic dipeptides containing aromaticside-chains gave fragment ions resulting from loss of theside-chain; for phenylalanine the charge was retained onthe cyclic dipeptide ring but for tyrosine and tryptophanthe charge was retained by the side-chain (m/e 179 and202, respectively). Lysine-containing cyclic dipeptidesR'CH NH1 -+ HLKcHR 0 'n(n = 1 or 2)SCHEME 2gave a tristrimethylsilyl derivative under mild conditionsbut longer reaction times gave the tetrakistrimethylsilylderivative.Conclusion.-A general theoretical approach to ob-taining the sequence of amino-acids in an oligopeptide byconverting it into cyclic dipeptides has been shown towork practically in several instances.Analysis andidentification of cyclic dipeptides in mixtures by g.1.c.-mass spectrometry of their trimethylsilyl derivativeshas been demonstrated. The actual sequential conver-sion of oligopeptides into cyclic dipeptides was found togive variable yields of products under the conditions usedmaking the method at present unacceptable as a generalprocedure where only limited amounts of peptide areavailable.EXPERIMENTALThe following analytical conditions were satisfactory forcyclic dipeptides. T.1.c.was carried out on silica gel withCHC1,-MeOH (9 : 1) or CHC1,-MeOH-AcOH (70 : 10 : 5 ) .lo H. J. Svec and G. A. Junk, J . Amer. Chem. Soc., 1964, 86,2278.l1 K. Jankowski and L. Varfalvy, Bull. Acad. polon. Sci., Sbr.Sci. chim., 1971, 19, 651; 1972, 20, 423; R. Nagarajan, J. L.Occolowitz, N. Neuss, and S. M. Nash, Chem. Comm. 1969, 3591300 J.C.S. Perkin IG.1.c. was performed on 5 OV1 columns (2.1 m x 6mm)a t 190-320 "C with a nitrogen flow rate of 45 ml min-1.Mass spectra were obtained with an A.E.I. MS12 spectro-meter at 70 eV. G.1.c.-mass spectrometry was carried outon a column (2-1 m x 6 mm) of either 5 OV1 on GasChromQ or 3 OV 17 on GasChrom Q initially a t 166-170 "C andthen temperature-programmed at 4' min-l to 250 "C withthe carrier gas flowing a t 30 ml min-1.Synthesis of Cyclic Dipeptides.-In a typical experiment,the dipeptide H-Leu-Phe-OMe (20 mg) was heated inrefluxing dimethylformamide (3 ml) for 12 h.The solution(ninhydrin-negative) was evaporated in vacuo and theresidue sublimed a t 140-170 "C and 0.5 mmHg to give thecyclic dipeptide. The purity was checked by analysis,mass spectrometry, t.l.c., and in some instances, lH n.m.r.spectroscopy. Similarly, the following cyclic dipeptideswere prepared cycZo(-A-B-) ; A = Gly, B = Gly, Ala, Val,Leu, Pro, Lys, Ser, Phe, or Glu; A = Pro, B = Val, Pro, Leu,Ile, or Phe; A = Phe, B = Leu or Asp(0Me); A = Tyr,B = Ala; A = Trp, B = Leu or Met; A = Lys, B = Val;A = Leu, B = Leu; A = Ile, B = His.The cyclic dipeptide (< 1 mg) was Trimethylsilylation.left in a stoppered vial with NO-bistrimethylsilylacetamide(0.1-0.2 ml) a t 80 "C for 19 h. A sample of this solutionwas injected straight onto the g.1.c. column.This was carried out in the usualway with phenyl isothiocyanate to give a phenylthio-hydantoin (identified by mass spectrometry) and a residualpeptide which was then degraded to cyclic dipeptides.Degradation of Peptides to Cyclic Dipe$tides.-(a) Thepeptide (1.5 mg) was dissolved in dry pyridine (1 ml) andethyl phosphorodichloridite (0.01 ml) was added a t 0 "C.The solution was allowed to reach room temperature andwas then heated on a steam-bath for 48 h. The solution wasevaporated in vacuo to leave a brown gum in which nocyclic dipeptides were detected.(b) The peptide (4 mg) was heated a t 120 "C in dimethyl-formamide (6 ml) containing phenol (50 mg) for 5 h.Evaporation left a brown gum in which no cyclic dipeptideswere detected.(c) The peptide (10 mg) was heated in glacial acetic acid(4 ml) at 100-110 "C for 10 h. Evaporation in vacuoleft a brown residue containing cyclic dipeptides.5/100 Received, 16th January, 19761Edman degradation
机译:1975肽测序方法。第 1 部分。寡肽转化为环状二肽:气相色谱-质谱研究作者:Robert A. W. Johnstone。和 T. Jeffery PovaII,罗伯特·罗宾逊实验室利物浦大学已经研究了寡肽到环状二肽的化学降解和通过气相色谱-质谱法鉴定后者作为氨基酸测序的方法。描述了该方法的优缺点。L69 3BX通过热解将肽转化为环状二肽(二氧代哌嗪),然后通过g.1.c鉴定后者。l 该方法从无寡肽中产生所有可能的“顺序”环二肽,但目前尚不清楚是否可以通过对大于放线菌素的肽施加剧烈的热解条件来产生错误信息。我们已经研究了寡肽的替代酸催化转化为环状二肽,基于早期的有限例子,其中肽用 2-萘酚或乙酸加热.4作为例子,四肽 Leu-Gly-Gly-Leu 仅产生环状二肽 cy~Zo(-Leu-Gly-),~ 和三肽 Phe-Gly-Gly 产生 cycZo(-Phe-Gly-) .* 还有其他关于从三肽形成环状二肽以及它们在吡啶中形成 2 的报道,四肽的4,5-三氯苯酯61 A. B. Mauger, Chem. Comm., 1971, 39.8 N.Lichtenstein, J .Amer. Chem. SOC., 1938, 60, 560.J. D. Baty, R. A. W. Johnstone, and T. J. Povall, J.C.S.N. F. Albertson and F. C. McKay, J .美国化学SOC., 1953,75, 5323;F. C. McKay and N. F. Albertson, 同上, 1967,79, 4686.Chem. Comm., 1973, 392.As 本文设想的程序的图示,四肽ABCD将依次转化为两个环状二肽,AB和CD。 公元前。这种方法在多年前就被提出过,但由于当时不可能在所需的小规模上识别产品混合物的成分,因此没有采用这种方法。然而,通过g.1.c.质谱法鉴定环肽提供了一种小规模研究此类混合物的灵敏方法,并被用于这项工作。g.1.c. 的使用单独鉴定环二肽没有吸引力,因为有大量可能的环二肽(210 种常见氨基酸中的 210 种)。使用相对保留时间需要合成所有可能的环状二肽,更不用说肽:化学和生物化学,编辑 B. Weinstein,Marcel Dekker,纽约,1970 年,第 419-434 页;JC Sheehan 和 DN Mc-Gregor,J .阿梅尔·切恩。SOC., 1962, 84, 3000;G. Lucente 和 P.Frattesi,四面体字母,1972 年,42,4285.6 I<。Titlestad, Chem. Comm., 1971, 1627.6 J.迈恩霍夫,Y .Sanq 和 R. P. Pate1 iJ.C.S.Perkin 同异构体,仍然不能保证阳性鉴定。将质谱法与g.1.c.一起使用消除了这些困难。使用四肽Val-Gly-Leu-Phe作为测试材料,研究了几种将肽转化为环二肽的方法。将肽在(i)二甲基甲酰胺(DMF)、(ii)含DMF的苯酚、(iii)含乙酸的DMF、(iv)单独乙酸和(v)乙基亚磷二氯化吡啶中加热。只有冰醋酸单独使用或在DMF中被证明是成功的。因此,酸性催化对于环状二肽的顺序生产是必要的,也许可以观察到预期的环状二肽(表1)。然而,只有通过g.1.c.分离产物,然后对分离的组分进行质谱分析,才能明确鉴定环状二肽,因此对环肽的O-三甲基硅烷衍生物进行g.1.c.质谱分析(表2)。因此,五肽H-甘露-亮-亮-甘氨酸-甘氨酸-OH在用冰川乙酸处理时仅产生一种环状二肽cycZo(-甘氨酸-)。用异硫代氰酸苯酯降解Edman能够将末端甘氨酸鉴定为相应的苯硫代乙内酰脲(通过00SCHEME 1鉴定,如方案1所示。虽然酸性条件是必要的,但更强的酸性条件(HC1)将肽降解为氨基酸和小肽,但可能通过末端氨基的质子化来阻止环二肽的形成。附加质谱法),并得到四肽,Leu-Leu-Gly-Gly。与乙酸一起,该四肽得到两个环状二肽,cycZo(-Leu-Leu-)和cycZo(-Gly-Gly-)。这些以及其他肽的类似实验是在大约 20 pmol 的材料上进行的,并产生了表 1肽降解为环状二肽 a肽 b 检测到的环状二肽Ala-Phe-Leu循环(-Ala-Phe-)环(-Trp-Leu-)环(-Leu-Phe-)Trp-Met-Asp(0Me)-Phe环(-Trp-Met-)循环[-Asp (OMe)-Phe-]Gly-Phe-Gln-G1 y-G1 y cycZo (-Gly-Phe-)cyclo (-Gln-Gly-)Gly-Pro-Trp-Leu C ~ C Z O ( -Gly-PrO-)Trp-Gly-Leu-Phe C ~ C Z O (-Trp-Gly-)识别质谱中的离子 C44, 91、114、120、128、176、21870、83、98、111.154130、29930、77、103、130、24391、113、120、141、169、204、26077、130、31791、114、120、126、167、186、232、245、27691、113、20484、126、168、185a 通过质谱法鉴定不含 g.1.c 的混合物。分离。b 对于每种肽,重复相同的实验m/e值;斜体是在通过Edman方法去除N-末端氨基酸后剩余的肽上。表2肽降解为环状二肽 a肽 检测到环状二肽 鉴定质谱中的离子Gl y -L ys-Gl y C ~ C ~ O (-Gly-Lys-) 174, 267,468,473Ala-T yr-Leu-Phe cyclo (-Ala-Tyr-) 179, 271, 436, 450Ser-Gly-Leu-Phe cycle( -Ser-Gly-) 103, 147, 267, 346, 360Ala-Glu(0Me) -Leu-Gly cyclo [-Ala-Glu (OMe)]Lys-Val-Phe-GI y cyclo (-Phe-Gly) 91, 229, 267, 333, 348G1 y-Leu-Leu-G1 y-Gly cyclo (-Leu-Gly-) 见上文0 通过g.1.c.分离组分的质谱法鉴定(三甲基硅烷基衍生物).cycZo(-Leu-Phe-)cycZo(-Leu-Phe-) 参见上文cyclo (-Leu-G1 y-)267, 285, 313, 347, 389, 404241, 257, 326, 327, 343, 358166, 184。257, 258, 271, 299, 341如表1.五肽Elu-Gly-Pro-Trp-Leu提供环状二肽顺序形成的证据,该五肽没有游离末端氨基,也没有形成任何环状二肽。我们对肽转化为环状二肽,然后对产物混合物进行质谱分析的研究令人鼓舞,因为仅环状二肽引起的离子约为 50%。由于这些在这种尺度上很容易识别,因此该方法似乎适合在更小的尺度上使用。除表1和表2所示的一种简单肽外,其他所有肽的行为都与上述五肽相似,并且没有困难 encountered.by J. M. Turner, Ph.D. Thesis, Cambridge, 1965.7 G. W.肯纳;原w-OR1975 1299至少在本文使用的条件下,该方法可能不通用的第一个迹象是由四肽Lys-Val-Phe-Gly提供的,从中仅鉴定出环状二肽cycZo(-Phe-Gly-),尽管最初可能形成环(-Lys-Val-)(表2)。然而,在两种六肽H-Thr-Ala-Ile-Gly-Val-Gly-OH和H-Ala-Phe-Ile-Gly-Leu-Val-OH的情况下,g.1.c.质谱法无法检测到预期的环状二肽。同样,3欧元的胰岛素链没有产生可识别的环二肽和乙酸。因此,环状二肽的产量因ca而异。50% 降至 0%。肽与乙酸的反应,除了环状二肽外,还提供棕色材料,这些材料在g.1.c.质谱法上没有峰,可能是广泛降解和/或聚合的产物。在高温下对粗品进行质谱分析,表明存在大量高分子量物质。作为参考,合成了多种环状二肽,多是通过加热相应二肽的甲酯来合成的。对于g.l.c.,通过转化为三甲基硅烷衍生物使环二肽的极性降低,从而允许含有氨基酸残基(如asserine、酪氨酸和赖氨酸)的更复杂的肽以及含有更简单氨基酸的环二肽进行色谱分析。环肽的极性也因perme-t h y l a t i ~ n, ~而降低,但这些全甲基化化合物的质谱不如三甲基硅衍生物的质谱。已经报道了几种环状二肽的质谱图;线性二肽通过线性和环状二肽的光谱组合产生质谱,1°后者在质谱仪中形成。这里研究的环肽的质谱通常给出丰富的分子离子;M - 28、Af - 29 和 Af - 43 的碎片离子有时但并非总是存在,并且通常丰度较低,这与早期的建议相反。l1 类似地,H,N=CHR(R=氨基酸侧链)型的碎片离子经常存在,但并不总是存在(方案2)。除含有脯氨酸的外,环状二肽由于氨基酸残基之一的侧链丢失而显示出丰富的碎片离子,无论是否具有氢转移。亮氨酸、缬氨酸或丝氨酸的侧链丢失非常容易发生,以至于不存在分子离子,或者只存在一个非常低丰度的分子离子(方案2)。对于含有芳香族侧链的环状二肽,主要离子是由于侧链本身,例如组氨酸的m/e 81和82。在含有色氨酸的环状二肽中,质谱图仅显示 m/e 130 处的离子和分子。含赖氨酸的环状二肽得到一个离子A。B.莫格,J .Chromatog., 1968,87, 315.G. Marino, L. Valente, R. A. W. Johnstone, F. Moham-madi-Tabrizi, and L. Sodini, J.C.S. Chem. Comm., 1972, 357.a t m/e 84, 赖氨酸的特征,以及由于 NH 损失引起的离子;对于含谷氨酰胺的环状二肽,迄今为止最丰度的碎片离子是由分子离子中NH的损失产生的。与未甲基化环状二肽相比,全甲基化环状二肽的质谱几乎没有改善。三甲基硅烷化环状二肽的质谱图更令人满意。除了来自三甲基硅基本身的离子atm/e 73和75外,衍生物还具有丰富的分子和M-15离子。含有芳香族侧链的三甲基硅烷化环状二肽产生侧链丢失产生的碎片离子;对于苯丙氨酸,电荷保留在环状二肽环上,但对于酪氨酸和色氨酸,电荷保留在侧链上(分别为 M/E 179 和 202)。含赖氨酸的环状二肽R'CH NH1 -+ HLKcHR 0 'n(n = 1 或 2)方案 2 在温和条件下得到三三甲基硅烷衍生物,但反应时间较长得到四三甲基硅烷衍生物。结论:通过将寡肽转化为环状二肽来获取寡肽中氨基酸序列的一般理论方法已被证明在几种情况下实际上有效。通过g.1.c分析和鉴定混合物中的环状二肽。-其三甲基硅烷基衍生物的质谱法已经得到证实。发现寡肽实际连续转化为环状二肽,在所用条件下产物的产量各不相同,因此该方法目前不能作为仅提供有限量肽的一般程序。实验以下分析条件是令人满意的环状二肽。T.1.c.在硅胶上用CHC1,-MeOH(9:1)或CHC1,-MeOH-AcOH(70:10:5)进行。Amer. Chem. Soc., 1964, 86,2278.l1 K. Jankowski 和 L. Varfalvy, Bull.阿卡德·波隆。Sci., Sbr.Sci.查看原文查看译文化学, 1971, 19, 651;1972, 20, 423;R. Nagarajan, J. L.Occolowitz, N. Neuss, and S. M. Nash, Chem. Comm. 1969, 3591300 J.C.S. Perkin IG.1.c.在5%OV1色谱柱(2.1 m x 6mm)a t 190-320“C上进行,氮气流速为45 ml min-1。质谱图是用 A.E.I. MS12 光谱仪在 70 eV 下获得的。G.1.c.质谱法在GasChromQ上为5%OV1或在GasChrom Q上为3%OV 17的色谱柱(2-1 m x 6 mm)上进行,最初为166-170“C,然后在4'min-l至250”C下进行温度编程,载气流动为t 30 ml min-1。环状二肽的合成-在典型实验中,将二肽H-亮氨酸-Phe-OMe(20mg)加热回流二甲基甲酰胺(3ml)12 h,溶液(茚三酮阴性)真空蒸发,特蕾西升华140-170“C和0.5mmHg,得到环状二肽。通过分析、质谱、t.l.c.和在某些情况下通过lH n.m.r.光谱检查纯度。类似地,制备了以下环二肽[cycZo(-A-B-)];A = 甘氨酸,B = 甘氨酸、阿拉、谷氨酸、列伊、pro、lys、ser、phe或glu;A = Pro、B = Val、Pro、Leu、Ile 或 Phe;A = Phe,B = Leu 或 Asp(0Me);A = Tyr,B = Ala;A = Trp,B = Leu 或 Met;A = Lys,B = Val;A = 列伊,B = 列伊;A = Ile, B = His.将环状二肽(<1mg)进行三甲基硅烷基化,用NO-双三甲基硅基乙酰胺(0.1-0.2ml)a t 80“C在塞塞小瓶中放置19小时。将该溶液的样品直接注入g.1.c。列。这是以通常的方式用异硫氰酸苯酯进行的,得到苯硫基乙内酰脲(通过质谱法鉴定)和残余肽,然后将其降解为环状二肽。(a)将肽(1.5mg)溶于干燥的吡啶(1ml)中,并加入氯亚磷酸乙酯(0.01ml)0“C.使溶液达到室温,然后在蒸汽浴上加热48小时。将溶液在真空中蒸发,留下棕色胶,其中检测到无环二肽。(b)将肽(4mg)在含有苯酚(50mg)的二甲基甲酰胺(6ml)中加热120“C5小时,蒸发后留下棕色胶质,其中未检测到环状二肽。(c)将肽(10mg)在100-110“C的冰醋酸(4ml)中加热10小时。在真空中蒸发留下含有环状二肽的棕色残留物。[5/100 收稿日期, 19761年1月16日埃德曼退化

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号