首页> 外文期刊>computational mechanics >Implementation of the transformation field analysis for inelastic composite materials
【24h】

Implementation of the transformation field analysis for inelastic composite materials

机译:非弹性复合材料的变换场分析的实现

获取原文
获取外文期刊封面目录资料

摘要

The transformation field analysis is a general method for solving inelastic deformation and other incremental problems in heterogeneous media with many interacting inhomogeneities. The various unit cell models, or the corrected inelastic self-consistent or Mori-Tanaka fomulations, the so-called Eshelby method, and the Eshelby tensor itself are all seen as special cases of this more general approach. The method easily accommodates any uniform overall loading path, inelastic constitutive equation and micromechanical model. The model geometries are incorporated through the mechanical transformation influence functions or concentration factor tensors which are derived from elastic solutions for the chosen model and phase elastic moduli. Thus, there is no need to solve inelastic boundary value or inclusion problems, indeed such solutions are typically associated with erroneous procedures that violate (62); this was discussed by Dvorak (1992). In comparison with the finite element method in unit cell model solutions, the present method is more efficient for cruder mesches. Moreover, there is no need to implement inelastic constitutive equations into a finite element program. An addition to the examples shown herein, the method can be applied to many other problems, such as those arising in active materials with eigenstrains induced by components made of shape memory alloys or other actuators. Progress has also been made in applications to electroelastic composites, and to problems involving damage development in multiphase solids. Finally, there is no conceptural obstacle to extending the approach beyond the analysis of representative volumes of composite materials, to arbitrarily loaded structures.
机译:变换场分析是求解具有许多相互作用不均匀性的异质介质中的非弹性变形和其他增量问题的通用方法。各种晶胞模型,或校正后的非弹性自洽或Mori-Tanakafomulations,所谓的Eshelby方法,以及Eshelby张量本身都被视为这种更通用方法的特例。该方法可轻松适应任何均匀的整体加载路径、非弹性本构方程和微观力学模型。模型几何形状通过机械变换影响函数或集中因子张量进行合并,这些函数或张量来自所选模型和相位弹性模量的弹性解。因此,没有必要求解非弹性边界值或夹杂性问题,事实上,这种解通常与违反(62)的错误程序有关;Dvorak(1992)对此进行了讨论。与晶胞模型求解中的有限元方法相比,该方法对粗糙的网格更有效。此外,没有必要在有限元程序中实现非弹性本构方程。除了本文所示的示例之外,该方法可以应用于许多其他问题,例如在由形状记忆合金或其他致动器制成的组件引起的具有特征应变的活性材料中出现的问题。在电弹性复合材料的应用以及涉及多相固体损伤发展的问题方面也取得了进展。最后,将该方法扩展到分析具有代表性的复合材料体积之外,扩展到任意加载的结构,没有概念障碍。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号