首页> 外文期刊>Journal of mechanical design >A Novel Region-Division-Based Tolerance Design Method for a Large Number of Discrete Elements Distributed on a Large Surface
【24h】

A Novel Region-Division-Based Tolerance Design Method for a Large Number of Discrete Elements Distributed on a Large Surface

机译:A Novel Region-Division-Based Tolerance Design Method for a Large Number of Discrete Elements Distributed on a Large Surface

获取原文
获取原文并翻译 | 示例
           

摘要

The array structure is widely used in precise electronic products such as large phased array antennas and large optical telescopes, the main components of which are a large surface base and a large number of high-precision discrete elements mounted on the surface base. The geometric error of discrete elements is inevitable in the manufacturing process and will seriously degrade the product performance. To deal with the tolerance design of discrete elements, a region-division-based tolerance design method is proposed in this paper. The whole array was divided into several regions by our method and the tolerance of discrete elements was correlated with the region importance on the performance. The method specifically includes the following steps: first, the sensitivity of the product performance to geometric errors was analyzed and the statistical relationship between the performance and geometric errors was established. Then, based on the sensitivity matrix, the regional division scheme was developed, and the corresponding tolerance was optimized according to the established relationship function. Finally, the optimal tolerance was selected among the multiple solutions to achieve the best performance. Taking a large phased array as an example, a simulation experiment was performed to verify the effectiveness of the proposed method.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号