首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Two-Photon Laurdan Studies of the Ternary Lipid Mixture DOPC:SM:Cholesterol Reveal a Single Liquid Phase at Sphingomyelin:Cholesterol Ratios Lower Than 1
【24h】

Two-Photon Laurdan Studies of the Ternary Lipid Mixture DOPC:SM:Cholesterol Reveal a Single Liquid Phase at Sphingomyelin:Cholesterol Ratios Lower Than 1

机译:Two-Photon Laurdan Studies of the Ternary Lipid Mixture DOPC:SM:Cholesterol Reveal a Single Liquid Phase at Sphingomyelin:Cholesterol Ratios Lower Than 1

获取原文
获取原文并翻译 | 示例
           

摘要

The ternary lipid mixture DOPC:eggSM:cholesterol in excess water has been studied in the form of giant unilamellar vesicles using two-photon fluorescence microscopy. Previous publications based on single-photon fluorescence microscopy had reported heterogeneous phase behavior (phase coexistence) in the region of the triangular phase diagram corresponding to SM:cholesterol molar ratios <1. We have examined this region by two-photon microscopy of Laurdan-labeled mixtures and have found that, under our conditions, only a single liquid phase exists. We have shown that macroscopic phase separation in the above region can be artifactually induced by one-photon excitation of the fluorescent probes and ensuing photooxidation and is prevented using two-photon excitation. The main effect of increasing the concentration of cholesterol in mixtures containing 30 mol SM was to increase the rigidity of the disordered domains. Increasing the concentration of SM in mixtures containing 20 mol cholesterol gradually augmented the rigidity of the ordered domains, while the disordered domains reached minimal order at a SM:cholesterol 2.25:1 molar ratio, which then increased again. Moreover, the detailed measurement of Laurdan generalized polarization across the whole phase diagram allowed the representation, for both the single- and two-phase regions, of the gradual variation of membrane lateral packing along the diagram, which we found to be governed largely by SM:cholesterol interactions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号