首页> 外文期刊>Journal of mechanical design >Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
【24h】

Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization

机译:Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization

获取原文
获取原文并翻译 | 示例
           

摘要

Origami folding provides a novel method to transform two-dimensional (2D) sheets into complex functional structures. However, the enormity of the foldable design space necessitates development of algorithms to efficiently discover new origami fold patterns with specific performance objectives. To address this challenge, this work combines a recently developed efficient modified truss finite element model with a ground structure-based topology optimization framework. A nonlinear mechanics model is required to model the sequenced motion and large folding common in the actuation of origami structures. These highly nonlinear motions limit the ability to define convex objective functions, and parallelizable evolutionary optimization algorithms for traversing nonconvex origami design problems are developed and considered. The ability of this framework to discover fold topologies that maximize targeted actuation is verified for the well-known "Chomper" and "Square Twist" patterns. A simple twist-based design is also discovered using the verified framework. Through these case studies, the role of critical points and bifurcations emanating from sequenced deformation mechanisms (including interplay of folding, facet bending, and stretching) on design optimization is analyzed. In addition, the performance of both gradient and evolutionary optimization algorithms are explored, and genetic algorithms (GAs) consistently yield solutions with better performance given the apparent nonconvexity of the response-design space.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号