首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reaction ofN-substituted cyclic amines with 2,4-dichloroquinazoline, 2,4-dichloropyrimidine, and its 5-methyl derivative
【24h】

Reaction ofN-substituted cyclic amines with 2,4-dichloroquinazoline, 2,4-dichloropyrimidine, and its 5-methyl derivative

机译:N-取代环胺与2,4-二氯喹唑啉、2,4-二氯嘧啶及其5-甲基衍生物的反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM.SOC. PERKIN TRANS. I 1992 Reaction of N-Substituted Cyclic Amines with 2,4-Dichloroquinazoline, 2,4-Dichloropyrimidine, and its 5-Methyl Derivative Kenji Yoshida and Masahiro Taguchi Pharmaceuticals Research Center, Kanebo Ltd., 5-90,Tomobuchi-cho I -Chome, Miyakojima-ku, Osaka 534, Japan The reaction of N-substituted cyclic amines with 2,4-dichloroquinazoline 2 and 2,4-dichloro-5-methyI- pyrimidine 3b afforded 2-ami no-4-c h loroq u inazolines and 2 -amino -4 -c hloro-5-met h yIpyri mid ines, respectively. However, the reaction of these amines with 2,4-dichloropyrimidine 3a afforded not only 2-amino-4-chloropyrimidines but also the isomeric 4-amino-2-chloropyrimidines. The regio-selectivity of these reactions was considered to be determined by the steric nature of the substrates 2,3a and 3b.In our previous paper, we described how the reaction of quinazoline-2,4(1H,3H)-dione with N-substituted cyclic amines in combination with phosphoryl trichloride afforded 4-chloro- 2-(cyclic amin0)quinazolines regioselectivel y. ' Moreover, we reported that 2,4-dichloroquinazoline 2 was considered as an intermediate in the reaction. We have now found that the reaction of compound 2 with N-methylpiperidine Ib in 1,4- dioxane afforded 4-chloro-2-piperidinoquinazoline4a.In order to elucidate the regioselectivity of the reaction, we focused on the reaction of N-substituted cyclic amines (la-f) with 2,4- dichloropyrimidine3a and 2,4-dichloro-5-methylpyrimidine3b. This paper describes the reactions of cyclic amines la-f with substrates 2,3a and 3b.When compound 2 was allowed to react with N-methyl- piperidine lb (1.2 mol equiv.) in 1,4-dioxane at 100 "Cfor 1 h, 4-chloro-2-piperidinoquinazoline4a was isolated in 92 yield. The structure of the product 4a was confirmed by comparison with an authentic sample prepared by the method described in our previous paper.' In order to elucidate the scope and limitation of this type of reaction, the reaction of compound 2 with other cyclic amines was examined. The results are summarized in Table 1. In the case of six- or seven-membered cyclic amines (1be), the reaction proceeded regioselectively, and only quinazoline derivatives (4a or 4b), in which cyclic amines were substituted at the 2-position of quinazoline, were isolated.On the other hand, the reaction of compound 2 with five-membered cyclic amine la afforded 4-chloro-2-N-(4- chlorobuty1)-N-methylaminoJquinazoline 5. These results were in good accord with those of the reaction of quinazoline- 2,4( 1H,3H)-dione with N-substituted cyclic amines in combin- ation with phosphoryl trichloride.' It is well known that the 4-position of the quinazoline 2 is more reactive than the 2-position toward nucleophilic attack by primary or secondary amines.' The above reaction, however, indicates that the 2-position of compound 2 is more reactive than the 4-position for the attack by tertiary amines. In order to elucidate the regioselectivity ofthe above reaction, the reaction of substrates la-f with 2,4-dichloropyrimidine 3a and 2,4- dichloro-5-methylpyrimidine3b was examined.The reaction of the methylpyrimidine 3b with N-methyl-piperidine 1b afforded 4-chloro-5-met hyl-2-piperidinopyrimi- dine 6c in 84 yield. The structure of compound 6c was confirmed by comparison with an authentic sample prepared by chlorination of 5-methyl-2-piperidinopytimidin-4(3H)-0ne.~ The structure of product 6c was further confirmed by comparison of its NMR spectra with those of 2-chloro-5- methyl-4-piperidinopyrimidine7c, which was prepared by the reaction of dichloride 3b with piperidine. The 'H and 13C CI CI la; R=Me,n =4 2 3a; R=H b; R=Me,n =5 b; R=Me c; R=Me,n =6 d; R = CHpCH=CH2, n = 5 e; R=CHPPh,n =5 f; R=Pr,n =5 CI CI IMe 4a; n =5 b; n =6 6a; R=H, n =5 7a; R=H,n =5 b; R=H,n =6 b; R=H,n =6 c; R=Me,n =5 c; R=Me,n =5 d; R=Me,n =6 7' 8a; R=H 9 b; R=Me NMR assignments of regioisomers 6c and 7c were made based on C-H COSY, COLOC, and LSPD spectra and the data are shown in Tables 2 and 3.In the UV spectra, regioisomers 6c and 7c showed an absorption maximum at 325 and 289 nm, respectively. The results of the reaction of dichloride 3b with other N-substituted cyclic amines are summarized in Table 1. In the case of N-substituted six- or seven-membered cyclic amines, 4-chloro-2-(cyclicamino)-5-methylpyrimidines(6c or 6d) were obtained. However, in the case of N-substituted five-membered cyclic amine la, 4-chloro-2-N-(4-chlorobutyl)-N-methyl- 920 J.CHEM. SOC. PERKIN TRANS. I 1992 Table 1 Reaction of N-substituted cyclic amines (la-f) with 2,4-dichloroquinazoline 2, 2,4-dichloropyrimidines 3a, or 2,4-dichloro-5-methylpyrimidine 3b in 1,Cdioxane Reaction Reaction Isolation Amine Dichloride temp. ("C) time (r/h) Product yield () la 2 100 0.5 lb 2 100 1 lc 2 100 1 Id 2 120 6 le 2 120 12 la 3a 120 1 lb 3a 120 1.5 lc 3a 120 2 Id 3a 120 6 le 3a 120 12 If 3a 120 4 la 3b 100 4 lb 3b 100 4 lc 3b 120 2 Id 3b 120 12 le 3b 120 36 " Recovered. Table 2 'H and 13C NMR chemical shifts (6) of compound 6c in CDCI,, and results of COLOC experiments" 'H 1.54-1.67 2.12 3.73 8.04 I3C (3'-,4'-, 5'-H) (5-Me) (2'-,6'-H) (6-H) 160.6 (C-4) Jb 3J 160.4 (C-2) ,J 158.7 (C-6) 'J 115.3 (C-5) 2J zJ 44.7 (C-2', -6') 'J 25.6 (C-3', -5') 'J 2J 24.6 (C-4') J 15.1 (5-Me) 'J " 'J, ,J and 4Jindicate long-range coupling through two, three and four bonds, respectively.Change of the multiplicity was observed in LSPD experiment irradiated at 6 3.73. Table 3 'H and 13C NMR chemical shifts (6) of compound 7c in CDCI,, and results of COLOC experiments" 'H 1.62-1.74 2.19 3.49 7.88 I3C (3'-, 4'-, 5'-H) (5-Me) (2'-, 6'-H) (6-H) 165.3 (C-4) ,Jb 3J 159.0 (C-6) 'J 157.6 (C-2) ,J 114.9 (C-5) 'J 2J 48.3 (C-2', -6') 'J 25.7 (C-3', -5') 'J 'J 24.3 (C-4') 'J ,J 17.3 (5-Me) 'J 'J 'J, ,Jand 4Jindicate long-range coupling through two, three and four bonds, respectively.Change of the multiplicity was observed in LSPD experiment irradiated at 6 3.49. amino-5-methylpyrimidine 8b was obtained. The UV spectra of products 6c,6d and 8b showed an absorption maximum at -320 nm (Table 4) and suggested that the amino groups were substituted at the 2-position of the pyrimidine ring. On the other hand, the reaction of the piperidine lb with dichloropyrimidine 3a afforded not only 4-chloro-2-piperidino- pyrimidine 6a but also its regioisomer 2-chloro-4-piperidino- pyrimidine 7a in 24 and 76 yield, respectively. The structure of 5 43 4a 92 4b 87 4a, 2" 12,77" 4a, 2" 8,72" 8a, 9 5, 80 6a, 7a 24,76 6b, 7b 34,60 6a, 7a, 3a" 43,31,16" 6a, 7a, 3a" 22,20,49 " 6a,7a, 3a" 40,38, 14" 8b 78 6c 84 4d 83 6c,3b" 19,74" 6c,3b" 4,87" the products 6a and 7a was confirmed by comparison with authentic samples, which were prepared by chlorination of 2-piperidinopyrimidin-4(3H)-one and by the reaction of dichloride 3a with piperidine, respectively.These structures were further confirmed by the UV absorption maximum, at 315 and 290 nm respectively, which were in good accord with those of compounds 6c and 7c, respectively. The reaction of dichloride 3a with other N-substituted six- or seven-membered cyclic amines also afforded not only 2-chloro- 4-(cyclic amino)-5-methylpyrimidine (6a or 6b) but also the regioisomeric 4-chloro-2-(cyclic amino)-5-methylpyrimidine (7a or 7b).In the case of N-methyl five-membered cyclic amine la, 4-chloro-2-N-(4-chlorobutyl)-N-methylaminopyrimidine 8a and 2-chloro-4-N-(4-chlorobutyl)-N-methylaminopyrimi-dine 9 were obtained. The results are summarized in Table 1 and the structure of the products was assigned by their UV and * H NMR spectral data (Tables 4 and 5). It was reported that the reactivity of the 2-position of dichloride 3a relative to the 4-position increases as the solvent polarity and the nucleophilicity of the primary and secondary amines are decreased.6 In the above reaction of compound 3a with tertiary amines, the ratios of 2-amino-4-chloropyrimidines to 4-amino-2-chloropyrimidinesincreased with the increased bulk of the N-substituent and the ring size of the cyclic amines (8a/9,6a/7a and 6b/7b).The 4-position of compound 3a is considered to be more hindered than the 2-position by the presence of a hydrogen atom at the 5-position. Therefore, the increase of these ratios is explained by the steric hindrance between N-substituted cyclic amines and the hydrogen atom at the 5-position of compound 3a. On the other hand, compound 2 has a hydrogen atom at the 5-position (peri-position) and compound 3b has a methyl group at the 5-position. Owing to the presence of these groups, the 4-position of compounds 2 and 3b is considered to be more hindered than that of compound 3a. The steric interaction between these groups and the N-substituted cyclic amines is considered to be a main reason for the regioselective attack by the cyclic amines on the 2-position of substrates 2 and 3b.In conclusion, the regioselectivity of the reaction of compound 2,3a or 3b with the N-substituted cyclic amines are reasonably explained by the steric hindrance between the N-substituted cyclic amines and the substituent at the 5-position of the substrate 2, 3a or 3b. The reaction of compounds 2 and 3b with the N-substituted cyclic amines offers a new synthetic J. CHEM. SOC. PERKIN TRANS. I 1992 921 Table 4 Physical data for 2-amino-4-chloropyrimidines(6a-d,8a, 8b) and 4-amino-2-chloropyrimidines (7a-c, 9) Found () (Requires) Compound M.p. ("C) Recrystallizationsolvent m/z 1,,, (EtOH)/nm(/dm3 mol-' cm-I) Formula C H N 64' 6b 6c 6d 71 7b 7c 8a 8b 9 oil oil oil oil 8 1-82 oil 6 1-62 oil oil oil hexane hexane 197 (M'), 96 (base) 211 (M+), 70 (basej 21 1 (M +), 204 (base) 225 (M +,base), 164 197 (M + ,base), 218 211 (M'), 232 (base) 283 (M'), 206 (base) 233 (M'), 9 1 (base) 247 (M +), 206 (base) 233 (M+), 9 1 (base) 315 (2300), 251 (22 800) 318 (2400), 251 (22 200) 325 (2500), 250 (25 600) 327 (2000), 251 (20400) 290 (4800), 254 (17 900) 290 (4700), 253 (16 900) 289 (7000), 262 (10 600) 316 (2700), 248 (23 100) 324 (2700), 248 (24 300) 289 (4400), 251 (15 600) C9H 1 2C1N3 C ,H I ,GIN,*O.1 H,O 1OH c1 1 16C1N3 C9H 12C1N3 1 OH 14C1N3 1OH 14C1N3 C9H I 3C12N3 CIOH 1 SC1ZN3 C9H1 ,C12N3 54.5 (54.69 56.3 (56.26 56.45 (56.74 58.4 (58.53 54.8 (54.69 56.7 (56.74 56.7 (56.74 46.3 (46.17 48.3 (48.40 46.35 (46.17 6.2 6.12 6.6 6.70 6.5 6.67 7.1 7.14 6.1 6.12 6.6 6.67 6.5 6.67 5.5 5.60 6.0 6.09 5.6 5.60 21.2 21.26) 19.5 19.68) 19.8 19.85) 18.5 18.62) 21.3 2 1.26) 19.6 19.85) 19.9 19.58) 17.8 17.95) 16.9 16.93) 17.7 17.95) a Ref.4. Ref. 5. Ref. 7. Table 5 H NM R spectral data for 2-amino-4-chloropyrimidines (6a4, Sa, 8b) and 4-amino-2-chloropyrimidines(7a-c,9). Chemical shifts (6)and coupling constant (Hz, in parentheses) Compound 5-H 6- H Others 6a 6.43 (d, J 5.1) 8.12 (d, J 5.1) 1.54-1.74 (6 H, m, CH,CH,), 3.77 (4 H, t, J5.4, NCH,) 6b 6.44(d,J5.1) 8.13(d, J5.1) 1.52-1.84 (8 H, m, CH,CH,), 3.73 (4 H, t, J6.0, NCH,) 6c 8.04 (s) 1.54-1.74 (6 H, m, CH,CH,), 2.13 (3 H, s, 5-Me), 3.73 (4 H, t, J 5.3, NCH,) 6d 8.05 (s) 1.52-1.88 (8 H,m, CH,CH,), 2.14 (3 H, s, 5-Me), 3.70 (4 H, t, J 5.9, NCH,) 7a 6.38 (d, J 6.2) 7.97 (d, J 6.2) 1.57-1.77 (6 H, m, CH,CH,), 3.52-3.72 (4 H, m, NCH,) 7b 6.29 (d, J 6.2) 7.97 (d, J 6.2) 1.48-1.86 (8 H, m, CH,CH,), 3.36-3.86 (4 H, m, NCH,) 7c 7.89 (s) 1.62-1.74 (6 H, m, CH,CH,), 3.43-3.53 (4 H, m, NCH,) 8a 6.47 (d, J 5.1) 8.13 (d, J 5.1) 1.72-1.88 (4 H, m,CH,CH,), 3.13 (3 H, s, NMe), 3.53-3.72 (4 H, m, NCH, and CH,CI) 8b 8.05 (s) 1.68-1.85 (4 H, m, CH,CH2), 2.14 (3 H, s, 5-Me), 3.1 1 (3 H, s, NMe), 3.563.70 (4 H, m, NCH, and CH,CI) 6.30 (d, J 6.1) 8.01 (d, J6.1) 1.68-1.88 (4 H, m, CH,CH,), 3.06 (3 H, s, NMe), 3.50-3.74 (4 H, m, NCH, and CH,CI) method for 4-chloro-2-(cyclic amino)quinazolines and 4-chloro- Preparation of 4-Chloro-2-piperidinopyrimidine6a.-A mix-2-(cyclicamino)-5-methylpyrimidines. ture of 2-piperidinopyrimidin-4(3H)-one,(0.18 g, 1 .O mmol) and phosphoryl trichloride (0.31 g, 2.0 mmol) was heated at 100°C for 1 h.After being cooled to room temperature, the Experimental mixture was dissolved in CHC13 (10 cm3) and poured into ice- M.p.s were measured with a Yamato capillary melting point water. After being neutralized with 2 mol dm-, NaOH, the apparatus, model MP-21, and are uncorrected. 'H and 13C organic layer was separated, washed with water, dried over NMR spectra were recorded on a Brucker AM-300 spectro- MgSO,, and evaporated under reduced pressure. Upon PLC meter for solutions in CDCl,, and tetramethylsilane was used hexane-AcOEt (5:1) the residue gave compound 6a (0.17 g, as internal reference.Mass spectra were determined with an 86) as an oil. Hitachi M-80B spectrometer. Analytical and preparative TLC (PLC) were performed on silica gel 60 F,,, precoated plates Preparation of 4-Chloro-5-me thy i-2-piper idin opyr imidine (No. 571 7 and No. 571 5, respectively; Merck). .--A mixture of 5-methyl-2-piperidinopyrimidin-4(3H)-one (0.19 g, 1.0 mmol) and phosphoryl trichloride (0.31 g, 2.0 Reaction of Compounds 2, 3a and 3b with Several N-mmol) was heated at 100 "C for 30 min. After being cooled to Substituted Cyclic Amines.-The results are summarized in room temperature, the mixture was dissolved in CHCl, (10 Table 1. As a typical example, the reaction of dichloride 2 with cm3) and poured into ice-water. After being neutralized with amine lb is described below.A mixture of compound 2 (0.40 g, 2 mol dm-3 NaOH, the organic layer was separated, washed 2.0 mmol) and amine 1b (0.24 g, 2.4 mmol) in 174-dioxane (5.0 with water, dried over MgSO,, and evaporated under reduced cm3) was heated at 100 "C for 1 h. After being cooled to room pressure. Upon PLC (hexane-AcOEt (5 :l) the residue gave temperature, the mixture was concentrated under reduced compound 6c(0.20 g, 93) as an oil. pressure. Upon PLC with hexane-AcOEt (511)as develop- ing solvent, foowed by recrystallization from MeCN, the Preparation of 2-Chloro-5-methyl-4-piperidinopyrimidine 73-7c.-A solution of piperidine (0.34 g, 4.4 mmol) in 1,4-dioxane TeildUe gave compound 4a (046 g, 92) as crystals, m-~.15T. (3.0 cm3) was added dropwise to an ice-cooled solution of 2,4- dichloro-5-methylpyrimidine3b (0.33 g, 2.0 mmol) in 1,4-dioxane (3.0 cm3). The mixture was stirred at room temperature for 2 h and then evaporated under reduced pressure. Upon PLC hexane-AcOEt (3:1) the residue gave compound 7c (0.35 g, 83) as crystals. Acknowledgements We thank Dr. Goro Tsukamoto for his continued interest and encouragement. References 1 K. Yoshida, T. Tanaka and H. Ohtaka, J. Chem SOC.,Perkin Trans. I, 1991,1279. J. CHEM. SOC. PERKIN TRANS. 1 1992 2 W. L. F. Armarego, in The Chemistry of Heterocyclic Compounds, Fused Pyrimidines, Part I, Quinazolines, Wiley, New York, 1967, p. 228. 3 J. Reiter and L. Toldy, Acfa Chim. Acad. Sci. Hung., 1974,82,99. 4 B. Roth and L. A. Schloemer, J. Org. Chem., 1963,28,2659. 5 C.A. H. Rasmussen, H. C. van der Plas, P. Grotenhuis and A. Koudijs, J. Heterocycl. Chem., 1978, 15, 1121. 6 0. A. Zagulyaeva, N. V. Bukhatkina and V. P. Mamaev, Zh. Org. Khim., 1978,14,409. 7 I. I. Kuz’menko, USSR Pat., 551 329, 1977 (Chem. Abstr., 1977, 87, 39530); I. I. Kuz’menko and Yu. V. Bardik, Fiz. Akt. Veshchestua, 1988,20, 1 (Chem. Abstr., 1989, 110, 18178). Paper 1/048 12K Receiued 17th September 1991 Accepted 10th December 1991
机译:J. CHEM.SOC. PERKIN 译.I 1992 N-取代环胺与2,4-二氯喹唑啉、2,4-二氯嘧啶及其5-甲基衍生物的反应 Kenji Yoshida and Masahiro Taguchi Pharmaceuticals Research Center, Kanebo Ltd., 5-90,Tomobuchi-cho I -Chome, Miyakojima-ku, Osaka 534, Japan N-取代环胺与2,4-二氯喹唑啉2和2,4-二氯-5-甲基嘧啶3b的反应得到2-ami no-4-c h loroq u inazolines和2-amino-4-c hloro-5-met h yIpyri mid ines, 分别。然而,这些胺与2,4-二氯嘧啶3a的反应不仅提供了2-氨基-4-氯嘧啶,而且还提供了异构体4-氨基-2-氯嘧啶。这些反应的区域选择性被认为是由底物2,3a和3b的空间性质决定的。在我们之前的论文中,我们描述了喹唑啉-2,4(1H,3H)-二酮与N-取代的环胺与磷酰氯结合的反应如何得到4-氯-2-(环胺0)喹唑啉区域选择性y。我们现在发现化合物 2 与 N-甲基哌啶 Ib 在 1,4-二氧六环中的反应得到 4-氯-2-哌啶基喹唑啉4a。为了阐明反应的区域选择性,我们重点研究了N-取代环胺(la-f)与2,4-二氯嘧啶3a和2,4-二氯-5-甲基嘧啶3b的反应。本文描述了环胺 la-f 与底物 2,3a 和 3b 的反应。当化合物2在100“C下与N-甲基-哌啶lb(1.2mol当量)在1,4-二氧六环中反应1小时时,以92%的收率分离出4-氯-2-哌啶基喹唑啉4a。通过与我们之前论文中描述的方法制备的真实样品进行比较,证实了产物4a的结构。为了阐明此类反应的范围和局限性,研究了化合物2与其他环胺的反应。结果总结在表1中。在六元或七元环胺(1be)的情况下,反应以区域选择性方式进行,并且仅分离出喹唑啉衍生物(4a或4b),其中环胺在喹唑啉的2位被取代。另一方面,化合物2与五元环胺la的反应得到4-氯-2-[N-(4-氯丁基1)-N-甲氨基喹唑啉5.这些结果与喹唑啉-2,4(1H,3H)-二酮与N-取代环胺与三氯磷酰基反应的结果吻合较好。众所周知,喹唑啉 2 的 4 位比 2 位对伯胺或仲胺的亲核攻击更具反应性。然而,上述反应表明,化合物 2 的 2 位比 4 位对叔胺的攻击更具反应性。为了阐明上述反应的区域选择性,研究了底物la-f与2,4-二氯嘧啶3a和2,4-二氯-5-甲基嘧啶3b的反应。甲基嘧啶3b与N-甲基哌啶1b反应得到4-氯-5-甲基-2-哌啶基嘧啶-6c,收率为84%。通过与5-甲基-2-哌啶基嘧啶-4(3H)-0ne氯化制备的真实样品进行对比,确认了化合物6c的结构~ 通过将其NMR谱图与二氯化-5-甲基-4-哌啶基嘧啶7c的NMR谱图进行比较,进一步证实了产物6c的结构,后者是由二氯化物3b与哌啶反应制得的。'H 和 13C CI CI la;R=Me,n =4 2 3a;R=H b;R=Me,n =5 b;R=我 c;R=Me,n =6 d;R = CHpCH=CH2, n = 5 e;R=CHPPh,n =5 f;R=Pr,n =5 CI CI IMe 4a;n =5 b;n =6 6a;R=H, n =5 7a;R=H,n =5 b;R=H,n =6 b;R=H,n =6 c;R=Me,n =5 c;R=Me,n =5 d;R=Me,n =6 7' 8a;R=H 9 b;R=Me基于C-H COSY、COLOC和LSPD谱图对区域异构体6c和7c进行NMR分配,数据如表2所示,3.In UV光谱中,区域异构体6c和7c分别在325和289 nm处显示出最大吸收。二氯化物3b与其他N取代环胺的反应结果总结于表1。在N-取代的六元或七元环胺的情况下,得到4-氯-2-(环氨基)-5-甲基嘧啶(6c或6d)。然而,在N-取代的五元环胺la的情况下,4-氯-2-[N-(4-氯丁基)-N-甲基-920 J.CHEM. SOC. PERKIN TRANS.I 1992 表1 N-取代环胺(la-f)与2,4-二氯喹唑啉2,2,4-二氯嘧啶3a或2,4-二氯-5-甲基嘧啶3b在1,二氧六环反应中的反应 反应分离 二氯化胺 温度 (“C) 时间 (r/h) 产品收率 (%) la 2 100 0.5 lb 2 100 1 lc 2 100 1 Id 2 120 6 le 2 120 12 la 3a 120 1 lb 3a 120 1.5 lc 3a 120 2 id 3a 120 6 le 3a 12012 如果 3a 120 4 la 3b 100 4 lb 3b 100 4 lc 3b 120 2 Id 3b 120 120 12 le 3b 120 36 “ 恢复。表2 CDCI中化合物6c的H和13C NMR化学位移(6)以及COLOC实验结果“ 'H 1.54-1.67 2.12 3.73 8.04 I3C (3'-,4'-, 5'-H) (5-Me) (2'-,6'-H) (6-H) 160.6 (C-4) Jb 3J 160.4 (C-2) ,J 158.7 (C-6) 'J 115.3 (C-5) 2J zJ 44.7 (C-2', -6') 'J 25.6 (C-3', -5') 'J 2J 24.6 (C-4') J 15.1 (5-Me) 'J ” 'J, ,J 和 4J 分别表示通过两个键、三个键和四个键进行长程耦合。在 6 3.73 照射的 LSPD 实验中观察到多重性的变化。表3 CDCI中化合物7c的H和13C NMR化学位移(6)及COLOC实验结果“ 'H 1.62-1.74 2.19 3.49 7.88 I3C (3'-, 4'-, 5'-H) (5-Me) (2'-, 6'-H) (6-H) 165.3 (C-4) ,Jb 3J 159.0 (C-6) 'J 157.6 (C-2) ,J 114.9 (C-5) 'J 2J 48.3 (C-2', -6') 'J 25.7 (C-3', -5') 'J 'J 24.3 (C-4') 'J ,J 17.3 (5-Me) 'J 'J 'J, ,Jand 4J 分别表示通过两个键、三个键和四个键进行长程耦合。在 6 3.49 辐照的 LSPD 实验中观察到多重性的变化。得到氨基]-5-甲基嘧啶8b。产物6c、6d和8b的紫外光谱显示,在-320 nm处的吸收最大值(表4),表明氨基在嘧啶环的2位被取代。另一方面,哌啶lb与二氯嘧啶3a的反应不仅使4-氯-2-哌啶基嘧啶6a,而且其区域异构体2-氯-4-哌啶基嘧啶7a的收率分别为24%和76%。5 43 4a 92 4b 87 4a, 2“ 12,77” 4a, 2“ 8,72” 8a, 9 5, 80 6a, 7a 24,76 6b, 7b 34,60 6a, 7a, 3a“ 43,31,16” 6a, 7a, 3a“ 22,20,49 ” 6a,7a, 3a“ 40,38, 14” 8b 78 6c 84 4d 83 6c,3b“ 19,74” 6c,3b“ 4,87” 产品6a和7a通过与真品样品的比较得到确认, 分别由2-哌啶基嘧啶-4(3H)-酮氯化和二氯化物3a与哌啶反应制得。这些结构分别在315和290 nm处的UV最大吸收量进一步证实,分别与化合物6c和7c的吸收量一致。二氯化物3a与其他N-取代的六元或七元环胺的反应不仅提供了2-氯-4-(环氨基)-5-甲基嘧啶(6a或6b),而且还提供了区域异构体4-氯-2-(环状氨基)-5-甲基嘧啶(7a或7b)。在N-甲基五元环胺la的情况下,得到了4-氯-2-[N-(4-氯丁基)-N-甲基氨基]嘧啶8a和2-氯-4-[N-(4-氯丁基)-N-甲基氨基]嘧啶9。结果总结在表1中,并通过其UV和* H NMR光谱数据(表4和表5)分配产物的结构。据报道,随着伯胺和仲胺的溶剂极性和亲核性降低,二氯化物3a的2位反应性相对于4位的反应性增加.6在化合物3a与叔胺的上述反应中,2-氨基-4-氯嘧啶与4-氨基-2-氯嘧啶的比例随着N-取代基体积的增加和环胺的环尺寸的增加而增加(8a/9,6a/7a和6b/7b)。化合物 3a 的 4 位被认为比 2 位受到更大的阻碍,因为在 5 位上存在氢原子。因此,这些比率的增加可以通过化合物 3a 的 5 位 N 取代环胺与氢原子之间的空间位阻来解释。另一方面,化合物 2 在 5 位(周界位置)有一个氢原子,化合物 3b 在 5 位上有一个甲基。由于这些基团的存在,化合物 2 和 3b 的 4 位被认为比化合物 3a 的 4 位受到更大的阻碍。这些基团与N取代的环胺之间的空间相互作用被认为是环状胺对底物2和3b的2位进行区域选择性攻击的主要原因。综上所述,化合物2,3a或3b与N-取代环胺反应的区域选择性可以通过N-取代环胺与底物2、3a或3b的5位取代基之间的空间位阻来合理解释。化合物 2 和 3b 与 N-取代的环胺的反应提供了一种新的合成 J. CHEM. SOC. PERKIN TRANS.I 1992 921 表4 2-氨基-4-氯嘧啶(6a-d,8a,8b)和4-氨基-2-氯嘧啶(7a-c,9)的物理数据 (%) (需要) 化合物 M.p.(“C)再结晶溶剂 m/z 1,,, (EtOH)/nm(&/dm3 mol-' cm-I) 式式 C H N 64' 6b 6c 6d 71 7b 7c 8a 8b 9 油 8 1-82 油 6 1-62 油 油 己烷 己烷 197 (M'), 96 (碱) 211 (M+), 70 (碱j 21 1 (M +), 204 (碱) 225 (M +,碱), 164 197 (M + ,基数)、218、211(M')、232(基数)、283(M')、206(基数)、233(M')、9 1(基数)、247(M+)、206(基数)、233(M+)、9 1(基数)、315(2300)、251(22 800)、318(2400)、251(22、200)、325(2500)、250(25 600)、327(2000)、251(20400)、290(4800)、254(17 900)、290(4700)、253(16 900)、289(7000)、262(10 600)、316(2700)、 248 (23 100) 324 (2700), 248 (24 300) 289 (4400), 251 (15 600) C9H 1 2C1N3 C ,H I ,GIN,*O.1 H,O 1OH c1 1 16C1N3 C9H 12C1N3 1 OH 14C1N3 1OH 14C1N3 C9H I 3C12N3 CIOH 1 SC1ZN3 C9H1 ,分子式:C12N3 54.5 (54.69 56.3 (56.26 56.45 (56.74 58.4 (58.53 54.8 (54.69 56.7 (56.74 56.7 (56.74 46.3 (46.17 48.3 (48.40 46.35 (46.17 6.2 6.12 6.6 6.70 6.5 6.67 7.1 7.14 6.1 6.12 6.6 6.67 6.56.67 5.5 5.60 6.0 6.09 5.6 5.60 21.2 21.26) 19.5 19.68) 19.8 19.85) 18.5 18.62) 21.3 2 1.26) 19.6 19.85) 19.9 19.58) 17.8 17.95) 16.9 16.93) 17.7 17.95) a 参考文献 4.参考文献 5.参考文献 7.表5 2-氨基-4-氯嘧啶(6a4,Sa,8b)和4-氨基-2-氯嘧啶(7a-c,9)的H NM R光谱数据。化学位移 (6) 和耦合常数 (Hz, 括号内) 化合物 5-H 6- H 其他 6a 6.43 (d, J 5.1) 8.12 (d, J 5.1) 1.54-1.74 (6 H, m, CH,CH,), 3.77 (4 H, t, J5.4, NCH,) 6b 6.44(d,J5.1) 8.13(d, J5.1) 1.52-1.84 (8 H, m, CH,CH,), 3.73 (4 H, t, J6.0, NCH,) 6c 8.04 (s) 1.54-1.74 (6 H, m, CH,CH,), 2.13 (3 H, s, 5-Me), 3.73 (4 H, t, J 5.3, NCH,) 6d 8.05 (s) 1.52-1.88 (8 H,m, CH,CH,), 2.14 (3 H, s, 5-Me), 3.70 (4 H, t, J 5.9, NCH,) 7a 6.38 (d, J 6.2) 7.97 (d, J 6.2) 1.57-1.77 (6 H, m, CH,CH,), 3.52-3.72 (4 H, m, NCH,) 7b 6.29 (d, J 6.2) 7.97 (d, J 6.2) 1.48-1.86 (8 H, m, CH,CH,), 3.36-3.86 (4 H, m, NCH,) 7c 7.89 (s) 1.62-1.74 (6 H, m, CH,CH,), 3.43-3.53 (4 H, m, NCH,) 8a 6.47 (d, J 5.1) 8.13 (d, J 5.1) 1.72-1.88 (4 H, m,CH,CH,), 3.13 (3 H, s, NMe), 3.53-3.72 (4 H, m, NCH, and CH,CI) 8b 8.05 (s) 1.68-1.85 (4 H, m, CH,CH2), 2.14 (3 H, s, 5-Me), 3.1 1 (3 H, s, NMe), 3.563.70 (4 H, m, NCH, and CH,CI) 6.30 (d, J 6.1) 8.01 (d, J6.1) 1.68-1.88 (4 H, m, CH,CH,), 3.06 (3 H, s, NMe), 3.50-3.74 (4 H, m, NCH, and CH,CI) 4-氯-2-(环氨基)喹唑啉和 4-氯-4-氯-2-哌啶基嘧啶6a.-A混合物-2-(环氨基)-5-甲基嘧啶的制备方法.2-哌啶基嘧啶-4(3H)-酮,(0.18 g, 1 .O mmol)和三氯磷酰(0.31g,2.0mmol)在100°C下加热1小时,冷却至室温后,将实验混合物溶解在CHC13(10cm3)中,倒入冰中-用Yamato毛细管水测量M.p.s。用2mol dm-、NaOH中和后,该装置,型号为MP-21,并且未校正。'H和13C有机层分离,用水洗涤,干燥后用布鲁克AM-300光谱仪记录NMR谱图-MgSO,减压蒸发。在PLC计量仪上对CDCl中的溶液使用[己烷-AcOEt(5:1)],残留物得到化合物6a(0.17g,作为内部参比。质谱测定为86%)为油。日立 M-80B 光谱仪。在硅胶 60 F,,, 预包板上进行分析和制备 TLC (PLC) 制备 4-氯-5-me thy i-2-胡椒 idin opyr 咪啶(分别为 No. 571 7 和 No. 571 5;默克)。将5-甲基-2-哌啶基嘧啶-4(3H)-酮(0.19g,1.0mmol)和三氯磷酰(0.31g,化合物2,3a和3b与几个N-mmol的2.0反应)的混合物在100“C下加热30分钟。在室温下冷却至取代的环状胺后,将混合物溶解在CHCl中,(10表1。作为典型的例子,将二氯化物2与cm3)反应并倒入冰水中。用胺中和后,lb描述如下。将化合物2(0.40g,2mol dm-3 NaOH,分离有机层,洗涤2.0 mmol)和胺1b(0.24 g,2.4 mmol)在174-二氧六环(5.0加水,用MgSO干燥,并在还原cm3下蒸发)的混合物在100“C下加热1 h。冷却至室压后。在PLC(己烷-AcOEt(5:l))下对残留物给予温度,将混合物在还原化合物6c(0.20g,93%)下浓缩为油。压力。以己烷-AcOEt(511)为展开溶剂,通过MeCN重结晶法制备2-氯-5-甲基-4-哌啶基嘧啶73-7c.-哌啶溶液(0.34 g,4.4 mmol)在1,4-二氧六环中,得到化合物4a(046 g,92%)作为晶体,m-~.15T.(3.0 cm3)滴加到2,4-二氯-5-甲基嘧啶3b(0.33 g, 2.0 mmol)的1,4-二氧六环(3.0 cm3)。将混合物在室温下搅拌2小时,然后在减压下蒸发。在PLC [hexane-AcOEt (3:1)]上,残基得到化合物7c(0.35g,83%)作为晶体。致谢 我们感谢 Goro Tsukamoto 博士一直以来的关注和鼓励。参考文献 1 K. Yoshida, T. Tanaka and H. Ohtaka, J. Chem SOC.,Perkin Trans. I, 1991,1279.J. CHEM. SOC. PERKIN TRANS. 1 1992 2 W. L. F. Armarego, in The Chemistry of Heterocyclic Compounds, Fused Pyrimidines, Part I, Quinazolines, Wiley, New York, 1967, p. 228.3 J. Reiter 和 L. Toldy,Acfa Chim。中国科学院, 1974,82,99.4 B. Roth 和 L. A. Schloemer, J. Org. Chem., 1963,28,2659.5 C.A. H. Rasmussen, H. C. van der Plas, P. Grotenhuis和A. Koudijs, J. Heterocycl.化学, 1978, 15, 1121.6 0.A. Zagulyaeva, N. V. Bukhatkina 和 V. P. Mamaev, Zh. Org. Khim., 1978,14,409.7 I. I. because'menko, 苏联专利, 551 329, 1977 (Chem. Abstr., 1977, 87, 39530);I. I. 因为'menko 和 Yu.V.巴迪克,菲兹。阿克特。Veshchestua, 1988,20, 1 (Chem. Abstr., 1989, 110, 18178).论文 1/048 12K 1991 年 9 月 17 日收稿 1991 年 12 月 10 日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号