首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reactions of bromotrifluoromethane and related halides. Part 12. Transformation of disulfides into perfluoroalkyl sulfides in the presence of sulfoxylate anion radical precursors
【24h】

Reactions of bromotrifluoromethane and related halides. Part 12. Transformation of disulfides into perfluoroalkyl sulfides in the presence of sulfoxylate anion radical precursors

机译:溴三氟甲烷和相关卤化物的反应。第 12 部分。在磺氧基化物阴离子自由基前体存在下将二硫化物转化为全氟烷基硫化物

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM.SOC. PERKIN TRANS. 1 1992 Reactions of Bromotrifluoromethane and Related Halides. Part 12. Transformation of Disulfides into Perfluoroalkyl Sulfides in the Presence of Sulfoxylate Anion Radical Precursors Jean-Louis ClaveL8 Bernard Langlois,b Roland Nantermet/ Marc Tordeux' and Claude Wakselman*tC a Rhdne- Poulenc Recherches, Centre de recherches des Carrieres, 6.P. 62, 69192 Saint- Fons, France Universite Claude Bernard, Laboratoire de Chirnie Organique 3, associe au CNRS (URA 467), 43 bd. du I1 novernbre 1918, 69622 Villeurbanne, France CNRS-CERCOA, 2 rue Henri Dunant, 94320 Thiais, France Perfluoroalkyl sulfides are prepared by reaction of perfluoroalkyl halides with disulfides in the presence of sulfoxylate anion radical precursors. Aliphatic, aromatic and heteroaromatic disulfides bearing cyano, ester and amino functional groups have been employed; a variety of perhalogenoalkanes can also be employed, e.g.CF,(CF,),I, CF,Br, CF,Br,, CF,BrCI, CFCI, and CF,CICFCI,. The most convenient sulfoxylate anion radical precursor for this reaction is formed by a combination of sodium formate and su If ur dioxide. The high lipophilicity ' of the trifluoromethylthio group makes Results it useful in the pharmaceutical and agrochemical fields 2.3 and Initial experiments were performed with the sulfoxylate anion consequently, the synthesis of trifluoromethyl sulfides has radical precursors previously used for the perfluoroalkylation In connection with this, long-chain of electron-rich aromatic compounds: sodium dithionite 28929attracted much intere~t.~ perfluoroalkyl sulfides have been proposed as intermediates for Na,S,O,, sodium hydroxymethanesulfinate (Rongaliteo) the synthesis of fluorinated sulfonic acids.5 Trifluoromethyl NaO,SCH,OH, zinc hydroxymethanesulfinate (Decrolinea) sulfides have been prepared by a variety of methods, the initial Zn(02SCH20H),, or a mixture of sulfur dioxide with a one being chlorination of a methyl group followed by halogen reductant, such as zinc.Later on, sodium formate was preferred Other methods have included use of trifluoro- for the mild transformation of SO, into the sulfoxylate anion e~change.~.~ methanesulfenyl halides 7-' O or trifluoromethylthio deriv- radical SO,' -,30 dipolar aprotic solvents such as dimethylforma- atives of metals,' '-' photochemical trifluoromethylations of mide (DMF) being used.Since sodium dithionite was sparingly disulfidesl7 and thiols '831 by trifluoromethyl halides, and soluble in DMF, water was employed as co-solvent: the greater spontaneous perfluoroalkylation of thiolates by bromotri-solubility of sodium hydroxymethansulfinate allowed less water fluoromethane under slight pressure; 20*2' the last-mentioned to be used whilst with the corresponding zinc salt it was compound can also be used for the trifluoromethylation of unnecessary. With the readily soluble formate dry DMF was thiocyanates in the presence of zinc.22 A more sophisticated employed. In the presence of water sodium dithionite produced trifluoromethylating agent led also to trifluoromethyl sulfides.23 the sulfite anion,31 the reaction of which with the disulfide Recently, the trifluoromethylation of disulfides with sodium led to a polar by-product (Scheme 2).Use of the sodium trifluoromethanesulfnate under oxidative conditions has been formate-sulfur dioxide mixture in pure DMF limited this proposed.24 whilst long-chain perfluoroalkyl sulfides are avail- possible side-reaction. able by perfluoroalkylation of disulfides,' thiolates ,',,1,25 and thiocyanates.,2,26 HSO,-+ RSSR-RSS0,H + RS-Frequently, the preparation of these fluorinated sulfides involves the use of toxic or expensive reagents, harsh conditions Scheme 2 or sensitive salt derivatives. Consequently, we have looked for In one example, inorganic products were determined.Prepar- a mild and cheap chemical transformation compatible with ation of 13a from the disulfide 11(1 equiv.), CF,Br (ca. 13bar t)various functional groups. We report here the smooth per- sodium formate (2 equiv.) and sulfur dioxide (2 equiv.), was fluoroalkylation of aliphatic, aromatic and heteroaromatic performed following method 2 in the Experimental section. disulfides by easily available perfluoroalkyl halides in the Acidimetry showed the presence of CO, (28 in the gas phase presence of various precursors of the sulfoxylate anion radical calculated us. sodium formate). Ionic chromatography detected SO,'-(see Scheme 1) (for a preliminary communication, see F-(8 us. disulfide), Br- (95 us. disulfide), (HC02- 19 ref.27). from sodium formate), CF3S02 -(20 from SO,) and SO3, -RSSR + 2RFX SO,'-precursors (3 from SO,). Sulfur dioxide was detected by iodometry (32RSRF in the gas phase and 65 in solution from initial SO2). I 2 3 Consequently, this anhydride was recovered or transformed into sodium trifluoromethanesulfinate in a 91 total yield. It Scheme 1 appeared to be a mediator in the reaction. The ratios between the reactants and the yield of 13a (85) were in agreement with This method was based on the formation of perfluoroalkyl the stoichiometry written on Scheme 1, which involved the radicals under reductive conditions 28*29 and on the suscepti- bility of the weak sulfur-sulfur bond in disulfides to free radical at tack. ' t 1 bar = lo5 Pa.transformation of the two R groups of the disulfide. The major by-product was the perfluoroalkanesulfinate salt resulting from the direct reaction of the halide with the sulfoxylate anion radical 32-34 (Scheme 3). The importance of this side-reaction was dependent on the reactivity of the fluorinated halide 2. Perfluoroalkyl iodides CF,(CF,),I (n = 1, 3, 5) and 1,1,2-tri- chlorotrifluoroethane were more reactive than bromotrifluoro- methane and bromochlorodifluoromethane. Initially, simple aromatic and aliphatic disulfides 1 (R = Ph, Me, Bu, PhCH,) were examined. Various fluoroalkyl sulfides 4-10 were obtained from C4F,I, C,F, 71, C,F, ,I, CCl,FCClF, and CF,BrCl (see Scheme 4). Et02CCH2SCF,CI 10 Scheme 4 The example 10 showed that the reaction was compatible with the presence of an ester group.The synthesis of substituted pyrazoles 13 and 14, from disulfides 11 and 12 respectively, extended the scope of this method to heterocyclic derivatives bearing cyano and amino groups (see Scheme 5; Table 1). NC 13 14 11 X=CF3 8 =CF3,X=CF3 a RF=CF~,X=CI 12 XtCI 5 RF= CF*Br, X = CF3 b I+ = CFZBr, X t CI c = CFClBr, X = CF3 c RF= CFCIBr, X = CI d RF=CFC~,X=CF~ d =CFCh,X=CI Scheme 5 Various perhalogenomethanes (CF,Br,, CFBr,Cl, CFCl,, CF,Br) were used for the synthesis of these fluorinated pyrazoles, showing the versatility of the method. Discussion Evidence for the presence of an intermediate perfluoroalkyl radical in the reactions of perfluoroalkyl halides with sulfoxyl- ate anion radical precursors was provided by alkylation of J.CHEM. SOC. PERKIN TRANS. 1 1992 However, the ready reduction of disulfides to thiolates ions is well-known and the formation of trifluoromethyl sulfides from thiolates and CF,Br by an SR,l pathway has already been observed.,' Some light was shed on the process by the reaction of bromochlorodifluoromethane and sodium benzenethiolate to give, by an ionic pathway, bromodifluoromethyl phenyl sulfide (see Scheme 7).,' From the same halide and diphenyl disulfide, we have now obtained the chloro analogue 9. Form-ation of this compound agreed with a direct radical attack on the sulfur-sulfur bond (Scheme 8) and not with the ionic path- way (Scheme 7) resulting from initial reductive cleavage of this bond by the reductant.Scheme 7 SO,'-+ CF,BrCI -CICF,' + Br-+ SO, Scheme 8 The reaction of 1,1,2-trichlorotrifluoroethanewith diphenyl disulfide gave compound 8 having two vicinal chlorine atoms (see Scheme 9), cleavage of the carbon-chlorine bond having occurred on one of the two geminal chlorine atoms, in agreement with the known homolysis of 1,1,2-trichlorotrifluoro-ethane.36 In contrast, we had earlier observed the formation, by an ionic pathway from a reaction with benzenethiolate,,' of an isomer having two geminal chlorine atoms (Scheme 10). SO2'-+ CF2CICFCI2----+ CF,CICFCI' + C1-+ SO, Scbeme 9 C,H,S-+ CF2CICFC12-C,H,SCI + CICF,CFCI-CICF,CFCI--F,C=CFCI + C1-C,H,SCF,CFCI-+ CF,CICFCI, -C,HSSCF2CFCl2+ ClCF,CFCI-Scheme 10 Thus, the structures of the products formed from these two halides were in favour of a radical pathway (see Scheme 6).The existence of the sulfoxylate anion radical in the mix- ture of formic acid (or its sodium salt) with sulfur dioxide (or aromatic substrates introduced into the reaction medi~m.~~.~~ one of its associate base) in DMF was checked by the direct The present synthesis can be considered as an attack on formation of perfluoroalkanesulfinate salts (in the absence of a disulfides by these perhalogenoalkyl radicals (see Scheme 6). disulfide) (Scheme 3; Table 2). Formation of trifluoromethane- SO,'-+ RFX RF' + X-+ SO, R,' + RSSR -RFSR + RS' 2RS' -RSSR Scheme 6 sulfinate from bromotrifluoromethane, sodium formate and sulfur dioxide has also been observed.37 In the reaction with aromatic disulfides, no perfluoroalkyl- ation of the nucleus was detected.However, perfluoroalkyl radical attack on anilines and phenols has been ob~erved.~**~~ The weak sulfur-sulfur bond is the most reactive site in these disulfides. J. CHEM. SOC. PERKIN TRANS. 1 1992 3373 Table 1 Pyrazoles Analyses:Found (Required) ~~~ Compd. Yield () M.p. ("C) 6, Formula C H N 34.6 1.05 13.213. 75 169.5-170.5 -44.9 cl 2H4C12F6N4S (-63.8) (34.22 0.96 13.30) 13b 90 162.5-1 63.5 -24.3 C,,H,BrCl,F,N,S 30.0 0.75 11.4 (-63.8) (29.90 0.84 1 1.62) 13C 24 191.5-193 -18 C, ,H,BrCl,F,N,S 29.4 0.75 11.0 (-63.8) (28.91 0.8 1 11.24) 13d 84 190-193 -21.4 12H4C14F4N4S 3 1.6 0.85 12.4 (-63.8) (31.74 0.89 12.40) 14p 72 192-194 -45 c,,H,Cl,F3N,S 34.0 1.o 14.4 (34.08 1.04 14.45) 14b 53 163.5-165 -24.3 C, ,H,BrCl,F,N,S 29.5 0.9 11.9 (29.46 0.90 12.49) 14 71 192-193 -17.9 C, H,BrCl,FN,S 28.6 0.9 11.9 (28.42 0.87 12.05) 14 64 189- 19 1 -21.4 C, ,H,Cl,FN,S 3 1.65 0.9 13.1 (31.42 0.96 13.3 1) ~~~~ ~~ ~ a SRF and if necessary C6H2Cl,CF, in parentheses.Prepared by a classical method.' Tab 2 RFX Reductor Precursor Sulfinate TP ()" _____~ _____~~ ___~ C8F,,I HC0,Na SO2 C8F1 ,SO,Na 15 83 C,F,I HC0,Na NaHSO, C,F,SO,Na 16 55 C,F,I HC0,H NaHSO, 16 55 C,F,I HC0,H C,F,I HC0,HCFCl, HC0,Na CF,BrCl HC0,H Na,S,O, Na,SO, SO, NaHSO, 16 16 CFCl,SO,Na 17 CF,ClSO,Na 18 53 29 44 38 @ TP transformation percentage of the perhalogenoalkane.Isolated yield, transformation percentage 100. Conclusion Introduction of disulfides into the reaction medium used for the preparation of perfluoroalkanesulfinate salts (from perfluoro- alkyl halides and sulfoxylate anion radical precursors) gives perfluoroalkylsulfides, by a mild and safe method with wide scope using inexpensive reagents. Experimental 'H and 13C NMR spectra were recorded on a Bruker AM 300 or AC 200 spectrometers in ppm downfield from tetramethyl- silane. 19FNMR were obtained on Varian EM360L or AC 200 spectrometers and were recorded in ppm downfield from tri- chlorofluoromethane (solvent: CDCl,). J values are recorded in Hz. Bromotrifluoromethane was purchased from Setic Labo, iodotrifluoromethane from Fluorochem Ltd., dimethylforma- mide, pyridine and organic reactants from Aldrich (and distilled before use), zinc, sodium hydrogen phosphate from Prolabo, sodium hydroxymethanesulfinate and sodium dithionite from Fluka.Iodoperfluoroalkanes were generous gifts of ATO- CHEM. Pyrazolyl disulfides were prepared by a literature method,'* and diethyl dithioacetate by esterification of the corresponding acid. Benzyl PerfIuorobutyl Sulfide 4.-A mixture of perfluorobutyl iodide (3.5 g, 10 mmol), sodium hydroxymethanesulfinate (4 g, 26 mmol), dibenzyl disulfide (2.5 g, 10 mmol) in DMF (10 cm3) and water (0.5 cm3) was stirred at room temp. for 6 h. The mixture was diluted with water (100 cm3) and extracted with ether.The extract was washed with 5 aqueous hydrochloric acid (2 x 20 cm3) and 10 aqueous sodium carbonate, dried (MgS04) and evaporated to give the title compound (0.6 g, 17); 22 b.p. 92 "C/17 Torr *; ~5~7.3(3 H, s) and 4.2 (2 H, s);SF -82.5 (3 F), -88.8 (2 F), -121.5 (2 F) and -126.5 (2 F). Methyl Per-uorooctyl Sulfide 5.-A mixture of perfluoro- octyl iodide (5.5 g, 10 mmol), sodium dithionite (3 g, 17 mmol), sodium hydrogen phosphate (3 g, 21 mmol) and dimethyl disulfide (1 g, 10.6 mmol) was stirred in DMF (10 cm') and water (5 cm3) for 6 h to give after work-up the title compound (0.9 g, 20); 22 b.p. 44OC/lOTorr; SH2.4;SF(SCF2)-92.3. PerJuorohexyl Phenyl Sulfide 6.-A mixture of perfluoro-hexyl iodide (4.5 g, 10 mmol), sodium hydroxymethanesulfinate (4 g, 26 mmol) and diphenyl disulfide (2.2 g, 10 mmol) in DMF (10 cm') and water (0.5 cm3) was stirred for 12 h to give after work-up perfluorohexyl phenyl sulfide (1.7 g, 40); b.p.99 "C/18 Torr; S,(SCF,) -87.2. Butyl PerJIuorohexyl Sulfide 7.-The preceding experiment was repeated with dibutyl disulfide (1.5 g, 10 mmol) to give the title compound (0.9 g, 22); b.p. 65 OC/19 Torr; aH(SCH2)2.7 (m); G,(SCF,) -92.3. 1,2-Dichloro- 1,2,2-tr@uoroethyl Phenyl Sulfide 8.-A mixture of 1,1,2-trichlorotrifluoroethane(3.8 g, 20 mmol), diphenyl disulfide (4.4g, 20 mmol), sodium dithionite (7 g, 40 mmol) and disodium hydrogen phosphate (6 g, 40 mmol) was stirred in DMF (20 cm3) and water (10 cm3) for 6 h to give after steam distillation and work-up the title compound (2.7 g, 52);39 b.p.55 "C/0.4 Torr; SF -63.3 (2 F, d, J 14.2), -89 (t, 1 F). Chlorodfluoromethyl Phenyl Suljide 9.-A thick glass flask containing a mixture of sodium hydroxymethanesulfinate (Ron- galiteo) (15.5 g, 100 mmol) and diphenyl disulfide (5.5 g, 25 mmol) in DMF (30 cm') and water (2 cm3) was evacuated and thermostatted at 20 "C. The mixture was then stirred under a pressure (1.7 bar) of bromochlorodifluoromethane for 6 h. After this the mixture was diluted with water (100 cm3) and extracted with ether. The extract was washed with 5 hydrochloric acid (2 x 20 cm') and 10 aqueous sodium carbonate, dried * 1 Torr z 133 Pa. (MgSO,) and evaporated to give the title compound (3.5 g, 72);" b.p. 71 "C/25 Torr; d,(SCF,) -27.Ethyl (Chlorodijfuoromethy1thio)acetate 10.-The preceding experiment was repeated with diethyl 2,2'-dithiodiacetate (5.9 g, 25 mmol) to give the title compound (3.3 g, 65); b.p. 81 "C/25 Torr; a,., 4.23 (2 H, q, J 10.5), 3.75 (2 H, s) and 1.3 (3 H, t); d~(sCF2) -27; v,,,/cm-' 1718; m/z 204, 206 (M+), 169 and 1 19. 5-Amino-3-cyano- 1 -(2,6-dichloro-4-trijluoromethylphenyl)-4-trijluoromethylthio- 1 H-pyrazole 13a.-Method 1. To a solution of bis-5-amino-3-cyano- 1 -(2,6-dichloro-4-trifluoromethylphen-yl)pyrazol-4-y1 disulfide 11(2 g, 2.9 mmol) in DMF (120 cm3) in a Teflon-coated autoclave (500 cm3) was added a solution of disodium hydrogen phosphate =12H,O (3.05 g, 9 mmol), in distilled water (60 cm3) followed, with stirring, by sodium dithionite (1.48 g, 9.5 mmol).Following closure, the autoclave was pressurized with bromotrifluoromethane (12-1 3 bar). After being stirred (1000 rpm Rushton turbine) at this pressure for 2 h at 25 "C, the autoclave was opened and the stirred reaction mixture diluted with water (500 cm3) and ether (500 cm3). The ethereal phase was separated, dried (MgSO,) and filtered. Removal of ether under reduced pressure gave a yellow oil which was subjected to a vacuum pump at 100°C to remove further volatile substances. The residue was passed through a lightning chromatography column containing silica gel (320 g), eluting with dichloromethane, to give the title compound (1.8 g, 75); m.p.169.5-170.5"C. Method 2. The disulfide (4 g, 5.9 mmol), sodium formate (1.16 g, 17.1 mmol), DMF (20 cm3) and sulfur dioxide (1.45 g, 22.8 mmol) were successively introduced into an autoclave and the mixture was stirred and heated at 60°C. Bromotrifluoro- methane (12-13 bar) was introduced and the mixture stirred for 4 h at this pressure to give the title compound (4.1 g, 85). 5-Amino-4-bromodijluoromethylthio-3-cyano-1 -(2,6-dichloro- 4-trifruoromethy1phenyl)-1 H-pyrazole 13b.-A solution of sod- ium dithionite (0.78 g, 4.5 mmol) and disodium hydrogen phosphate (0.64 g, 4.5 mmol) in water (20 cm3) was added to a stirred solution of the disulfide 11 (1.94 g, 3 mmol) in DMF (75 cm3) and water (5 cm3). After addition of dibromodifluoro- methane (1.89 g, 9 mmol) the reaction mixture was stirred at ambient temperature for 17 h and then poured onto water (185 cm3). Work-up as described for 13a, gave the title compound (1.31 g, 90); m.p.162.5-163.5 "C; m/z (IE) mode: 482 (parent with 35C137C179Br and 35C1281Br) and 351 (parent 35C1281Br). 5-Amino-4-bromochlorojluoromethylthio-3-cyano-1-(2,6-di-chloro-4-trijluoromethylpheny1)-1 H-pyrazole 13c.-Sodium di-thionite (1.92 g, ll mmol) and disodium hydrogen phosphate (1.56 g, 11 mmol) followed by water (45 cm3) were added to a stirred solution of bis-5-amino-3-cyano-l-(2,6-dichloro-4-tri-fluoromethylphenyl)pyrazo1-4-yldisulfide 11 (5.1 1 g, 7.3 mmol) in DMF (115 cm3). Partial solubilization of the inorganic reactants occurred.Chlorodibromofluoromethane (4.96 g, 2 1.9 mmol) was then added in one portion, followed by an additional quantity of DMF (75 cm3) to give an homogeneous mixture. This was stirred at ambient temperature for 1.6 h and then poured onto water (450 cm3). Work-up as described for 13a gave the title compound (1.76 g, 24), m.p. 191.5-193 "C; m/z 498 (IE) (parent with 35C1,37C179Br and 35C138'Br) and 351 (parent 'C1, 7C179Br minus CF79Br3 7C1). 5-Amino-3-cyano-4-dichloroJluoromethylthio-1 -(2,6-dichloro- 4-trijluorornethylphenyl)-lH-pyrazole13d-Sodium dithionite (3.96 g, 23 mmol), disodium hydrogen phosphate (3.23 g, 22 mmol) and fluorotrichloromethane (3.9 g, 28 mmol) were added J. CHEM. SOC. PERKIN TRANS. 1 1992 with stirring to the disulfide 11 (4 g, 5.7 mmol) in DMF (178 cm3) and water (89 cm3).This mixture was stirred at 15-17 "C for 1 h and then poured into ice-water (1600 cm3) and stirred for a further 30 min. The white solid was filtered off, washed with water (800 cm3) and dried to give the title compound (4.34 g, 84), m.p. 190-193 "C. 5-Amino-4-bromodijluoromethylthio-3-cyano-1 -(2,4,6-tri- chloropheny1)- 1 H-pyrazole 14b.-Sodium dithionite (0.42 g, 2.4 mmol) and disodium hydrogen phosphate (0.34 g, 2.4 mmol), followed by water (5 cm3) and dibromodifluoromethane (1.01 g, 4.8 mmol) were added with stirring to a solution of disulfide 12 (1.0 g, 1.6 mmol) in DMF (10 cm3). Since the stirred mixture remained heterogeneous, further DMF (15 cm3) and water (5 cm3) were added.The resulting solution, containing a small quantity of semisolid was then stirred at ambient temperature for 2.7 h. Work-up as described for 13a gave the title compound as a pale-yellow solid (0.76 g, 53); m.p. 163.5-165 "C; m/z (IE) 448 (parent with 35C1,37C179Br and 35C1381Br) and 319 (parent 35C1237C179Brminus CF,79Br). 5-Amino-4-bromochloroJEuoromethylthio-3-cyano-1 -(2,4,6- tri- chloropheny1)- 1 H-pyrazole 14c.-Sodium dithionite (1.23 g, 7 mmol) and disodium hydrogen phosphate (1 g, 7 mmol) followed by water (30 cm3) and chlorodibromofluoromethane (3.19 g, 14.1 mmol) were added with stirring to a solution of the disulfide 12 (3.0 g, 4.7 mmol) in DMF (75 cm3). The resulting mixture was stirred at ambient temperature for 40 min after which it was poured into water (300 cm3).Initially the mixture was extracted with diethyl ether (300 cm3) and then with dichloromethane. Lightning chromatography on a silica gel column of the material obtained by evaporation under reduced pressure of the ethereal extract gave a relatively impure product. The dichloromethane extract gave a product con- taining DMF which was removed by rotary evaporation at a temperature of 90-100 "C in uacuo. The resulting residue was dissoved in dichloromethane and extracted with water. Concen- tration of dried organic phase and lightning chromatography on a silica gel column gave the bright yellow title compound (0.5 g), m.p. 192-193 "C; total product yield, including the first fraction was 71; m/z (IE) 464 (parent with 35C1337C179Br and 35C1,8 'Br), 319 (parent 35C1337C179Br minus CF79Br35C1).5-Amino-3-cyano-4-dichlorojluoromethylthio-1-(2,4,6-tri-chloropheny1)-1 H-pyrazole 14d.-Zinc powder (60 g, 0.92 mol) was added to a stirred solution of the disulfide 12 (150 g, 0.2 mol) in DMF (1 125 cm3) at ambient temp. To this mixture, was added a solution containing sulfur dioxide (60.6 g, 0.95 mol) in DMF (160 cm3), followed by fluorotrichloromethane (290 g, 2.1 mol) After ca. 30 min a slight exotherm was noted (maximum temp. 30 "C). The reaction mixture was stirred at ambient temperature overnight and then filtered and added dropwise over 2 h to ice-water (14 dm3). The resulting solid was collected, washed thoroughly with water and dried to yield a yellow-range solid (185 g) which after recrystallization from toluene-hexane gave the title compound (123 g, 64), m.p.187- 189 "C. Sodium PerJIuorooctanesulJinate 15.-Sodium formate (2 g, 29 mmol) was added to stirred DMF (50 cm3) containing sulfur dioxide (2 g, 31 mmol) to give a blue mixture. Iodoperfluoro- octane (5.5 g, 10 mmol) was then added to the mixture which became yellow-orange with gas evolution. After 3 h, the mixture was analysed by I9F NMR. The iodide was almost completely transformed into the sulfinate salt 15 (6, CF,SO,--132). After filtration, DMF was removed under reduced pressure and the residue diluted with water (20 cm3). The solids were filtered off and chlorine (1 dm3, 44 mmol) was bubbled through the J.CHEM. SOC. PERKIN TRANS. i 1992 filtrate to give perfluorooctane sulfonyl chloride (4.3 g, 83) 40 after decantation. Sodium Perjluorobutanesulfinate 16.-Sodium formate (1.2 g, 18 mmol), sodium hydrogen sulfite (2.1 g, 20 mmol) and iodoperfluorobutane (3.5 g, 10 mmol) were stirred in DMF (20 cm3) for 10 h when 19F NMR analysis showed a 55 transformation percentage of the iodide into the sulfinate salt (6, CF,SO,--131). After the usual treatment (see 15), perfluorobutanesulfonyl chloride4' (1.3 g) was obtained by decantation (yield 78). The experiment was repeated with various mixtures: formic acid (1.2 g, 26 mmol) and sodium hydrogen sulfite (2.1 g, 20 mmol) (transformation percentage 55); formic acid (1 g, 22 mmol) and sodium metabisulfite (1.9 g, 10 mmol) (transformation percentage 53); formic acid (1 g, 22 mmol) and sodium sulfite (2.5 g, 20 mmol) (transformation percentage 29). Sodium Dichlorojluoromethanesuljinate 17.-Sodium formate (1.4 g, 21 mmol) followed by fluorotrichloromethane (2.7 g, 20 mmol) were added to DMF (20 cm3) containing sulfur dioxide (2 g, 3 I mmol) with stirring.After 3 h, the mixture was analysed by 19FNMR: the transformation percentage of the chloride into the sulfinate salt (6, CFS02--66) was 44.4' Sodium Chlorodijluoromethanesuljjnate 18.-Bromochloro-difluoromethane (1.65 g, 10 mmol) was condensed into DMF (20 cm3) after which formic acid (1.2 g, 26 mmol) and sodium hydrogenosulfite (2.1 g, 20 mmol) were added to it.After 14 h of stirring, the mixture was analysed by "F NMR: the trans- formation percentage of the bromide into the sulfinate salt (6, CF,SO,--69) was 38.33 Acknowledgements We thank Ongar (UK) and Triangle Park (USA) Rhone-Poulenc Research Centres for their cooperation in the extension of the method to the pyrazole series. References 1 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 1971,71,525. 2 R. Filler in Organojluorine Chemicals and their Industrial Appli- cations, R. E. Banks, ed., Ellis Horwood, Chichester, 1979. 3 E. Kuhle and E. Klauke, Angerv. Chem., Int. Ed. Engl., 1977, 16,735. 4 (a) L. M. Yagupol'skii in Aromaticheskie i Geterotsiklicheskie Soedineniya s Ftorsoderzhashchimi Zamestitelyami, Naukova Dumka, Kiev, USSR, 1988; (6) M.A. McClinton and D. A. McClinton, Tetrahedron, 1992,48,6555. 5 R. N. Haszeldine, B. Hewitson and A. E. Tipping, J. Chem. SOC., Perkin Trans. 1, 1974, 1706. 6 W. E. Truce, G. H. Birum and E. T. McBee, J.Am. Chem. SOC., 1952, 74, 3594. 7 W. A. Sheppard, J.Org. Chem., 1964,29,895. 8 S. Andreades, J. F. Harris and W. A. Sheppard, J. Org. Chem., 1964, 29, 898. 9 A. Haas and U. Niemann, Chem. Ber., 1977,110,67. 10 W. Gombler and G. Bollman, J. Fluorine Chem., 1984,34475. 11 E. H. Man, D. D. Coffman and E. L. Muetterties, J. Am. Chem. SOC., 1959,81,3575. 12 J. F. Harris, J. Org. Chem., 1967,32,2063. 13 V. V. Orda, L. M. Yagupol'skii, V. F. Bystrov and A. U. Stepanyants, Zh. Obshch. Khim., 1965,35, 1628. 14 L.M. Yagupol'skii, N. V. Kondratenko and V. P. Sambur, Synthesis, 1975,721. 15 D. C. Remy, K. E. Rittle, C. A. Hunt and M. B. Fredman, J. Org. Chem., 1976,41,1644. 16 J. H. Clark,C. W. Jones, A. P. Kybett, M. A. McClinton, J. M. Miller, D. Bishop and R. J. Blade, J.Fluorine Chem., 1990,48, 249. 17 R. N. Haszeldine, R. B. Rigby and A. E. Tipping, J. Chem. SOC., Perkin Trans. 1, 1972,2180. 18 V. I. Popov, V. N. Boiko and L. M. Yagupol'skii, J.Fluorine Chem., 1982,21,365. 19 N. V. Ignatev, V. N. Boiko and L. M. Yagupol'skii, Zh. Org. Khim., 1985,21,653. 20 C. Wakselman and M. Tordeux, J. Chem. SOC.,Chem. Comm., 1984, 793. 21 C. Wakselman and M. Tordeux, J. Org. Chem., 1985,50,4047. 22 M. Tordeux, C. Francese and C. Wakselman, J. Fluorine Chem., 1989,43,27.23 A. Sekiya and T. Unemoto, Chem. Lett., 1982, 1519. 24 J. L. Clavel, B. Langlois, E. Laurent and N. Roidot, Phosphorus, Sulfur and Silicon, 199 1,59, 169. 25 A. E. Feiring, J.Fluorine Chem., 1984,24, 191. 26 T. N'Guyen, M. Rubinstein and C. Wakselman, J.Org. Chem., 1981, 46,1938. 27 C. Wakselman, M. Tordeux, J. L. Clavel and B. Langlois, J. Chem. SOC.,Chem. Commun., 1991,993. 28 C. Wakselman and M. Tordeux, J. Chem. SOC.,Chem. Commun., 1987, 1701. 29 M. Tordeux, B. Langlois and C. Wakselman, J. Chem. Soc., Perkin Trans. 1, 1990,2293. 30 H. W. Gibson, Chem. Rev., 1969,69,673. 31 0.L. Andre and G. Gelbard, Bull, SOC. Chim., 1986,565. 32 C. Wakselman and M. Tordeux, Bull. SOC. Chim., 1986,868. 33 M. Tordeux, B. Langlois and C. Wakselman, J.Org. Chem., 1989,54, 2452 34 W. Y. Huang, J.Fluorine Chem., 1986,32, 179. 35 I. Rico, D. Cantacuzene and C. Wakselman, J. Org. Chem., 1983,48, 1979. 36 D. J. Burton and L. J. Kehoe, Telrahedron Lett., 1966,5163. 37 L. Gilbert, personal communication. 38 J. L. Clavel, B. Langlois, R. Nantermet, M. Tordeux and C. Wakselman, Eur. Pat. 374,061 (Chem. Abstr., 1991, 114,5483s). 39 S. Piettre, C. De Cock, R. Mereny and H. G. Viehe, Tetrahedron, 1987,43,4319. 40 H. Blancou, P. Moreau and A. Commeyras, J. Chem. SOC., Chem. Commun., 1976,885. 41 W. Y. Huang, B. N. Huang and J. L. Chen, Acta Chimica Sinica, 1986,44,45. Paper 2/047651 Received 4th September 1992 Accepted 15th September 1992
机译:J. CHEM.SOC., PERKIN TRANS. 1, 1992 溴三氟甲烷和相关卤化物的反应。第 12 部分。在磺氧基化阴离子自由基前体存在下将二硫化物转化为全氟烷基硫化物 Jean-Louis ClaveL8 Bernard Langlois,b Roland Nantermet/ Marc Tordeux' and Claude Wakselman*tC a Rhdne- Poulenc Recherches, Centre de recherches des Carrieres, 6.P. 62, 69192 Saint- Fons, France Universsite Claude Bernard, Laboratoire de Chirnie Organique 3, associe au CNRS (URA 467), 43 bd. du I1 novernbre 1918, 69622 Villeurbanne, France CNRS-CERCOA, 2 rue Henri Dunant, 94320 Thiais, France 全氟烷基硫醚是在磺氧基化阴离子自由基前体存在下,由全氟烷基卤化物与二硫化物反应制备的。已采用含氰基、酯和氨基官能团的脂肪族、芳香族和杂芳族二硫化物;也可以采用多种高卤代烷烃,如CF、(CF、)、I、CF、Br、CF、Br、CF、BrCI、CFCI和CF、CICFCI、CF。该反应最方便的磺氧基阴离子自由基前体是由甲酸钠和二氧化钠的组合形成的。三氟甲硫基的高亲脂性使结果 它在制药和农用化学品领域有用 2.3和初步实验是用磺酸阴离子进行的,因此,三氟甲基硫醚的合成具有以前用于全氟烷基化的自由基前体,与此相关的是富电子芳香族化合物的长链:连二亚硫酸钠28929吸引了很多intere~t.~全氟烷基硫化物被提出作为Na,S,O,羟基甲磺酸钠(Rongaliteo)合成氟化磺酸的中间体.5 三氟甲基NaO,SCH,OH,羟基甲磺酸锌(Decrolinea)硫化物已通过多种方法制备,初始为Zn(02SCH20H),或二氧化硫与甲基氯化后再用卤素还原剂(如锌)的混合物。后来,甲酸钠被优选为优选的其它方法包括使用三氟-进行SO的温和转化,转化为磺酸阴离子e~change.~.~甲烷硫基卤化物7-'O或三氟甲硫基衍生物-自由基SO,'-,30偶极非质子溶剂如金属的二甲基甲酰,'-'光化学三氟甲基化酰亚胺(DMF)正在使用。由于连亚硫酸钠通过三氟甲基卤化物稀缺地二硫化物7和硫醇'831,并且可溶于DMF,因此使用水作为助溶剂:羟基甲亚磺酸钠的溴三溶解度使硫代酸酯的自发全氟烷基化更大,允许在轻微压力下减少水氟甲烷;20*2'最后提到的使用,而与相应的锌盐一起,它是化合物,也可用于不必要的三氟甲基化。用易溶的甲酸盐干燥DMF在锌存在下使用硫氰酸盐.22A更为复杂。在水存在下,连二亚硫酸钠产生的三氟甲基化剂也导致了三氟甲基硫化物.23 亚硫酸阴离子,31 其与二硫化物的反应 最近,二硫化物与钠的三氟甲基化反应导致了极性副产物(方案2)。在氧化条件下使用三氟甲磺酸钠在纯DMF中的二氧化硫混合物受到限制,24而长链全氟烷基硫醚是可用的-可能的副反应。能够通过二硫化物的全氟烷基化,',,,1,25和硫氰酸盐,2,26 HSO,-+ RSSR-RSS0,H + RS-通常,这些氟化硫化物的制备涉及使用有毒或昂贵的试剂、条件恶劣的方案2或敏感的盐衍生物。因此,我们寻找了一个例子,测定了无机产品。制备一种温和且廉价的化学转化,与二硫键 11(1 当量)、CF、Br(约 13bar t)各种官能团的 13a 相容。我们在这里报告了光滑的甲酸全钠(2当量)和二氧化硫(2当量),在实验部分按照方法2进行脂肪族,芳香族和杂芳烃的氟烷基化。二硫化物在酸度法中易得的全氟烷基卤化物显示CO的存在(28%在气相中存在各种前体的磺氧基阴离子自由基计算我们甲酸钠)。离子色谱法检测到SO,'-(见方案1)(初步通讯见F-(8%美国二硫化物),Br-(95%美国二硫化物),(HC02-19%参考文献27)。 来自甲酸钠),CF3S02 -(20%来自SO,)和SO3,-RSSR + 2RFX SO,'-前体(来自SO的3%)。通过碘测法检测二氧化硫(初始SO2的气相为3%2RSRF,溶液为65%)。I 2 3 因此,该酸酐被回收或转化为三氟甲磺酸钠,总收率为 91%。它方案 1 似乎是反应的调解人。反应物与13a产率的比值(85%)与该方法一致,该方法基于方案1中写的全氟烷基的化学计量,其中涉及还原条件下的自由基28*29,以及二硫化物中弱硫-硫键对粘性自由基的敏感性。' t 1 bar = lo5 Pa.二硫化物的两个R基团的转化。主要副产物是卤化物与磺氧基阴离子自由基32-34直接反应产生的全氟烷烃亚磺酸盐(方案3)。这种副反应的重要性取决于氟化卤化物 2 的反应性。全氟烷基碘化物CF,(CF,),I (n = 1,3,5)和1,1,2-三氯三氟乙烷的反应性高于溴三氟甲烷和溴氯二氟甲烷。最初,检查了简单的芳香族和脂肪族二硫化物1(R = Ph,Me,Bu,PhCH,)。从C4F,I,C,F,71,C,F,,,I,CCl,FCClF和CF,BrCl得到各种氟烷基硫醚4-10(见方案4)。Et02CCH2SCF,CI 10方案4 实施例10表明该反应与酯基的存在是相容的。分别由二硫化物11和12合成取代的吡唑13和14,将该方法的范围扩大到带有氰基和氨基的杂环衍生物(见方案5;表1)。NC 13 14 11 X=CF3 8 &=CF3,X=CF3 a RF=CF~,X=CI 12 XtCI 5 RF= CF*Br, X = CF3 b I+ = CFZBr, X t CI c & = CFClBr, X = CF3 c RF= CFCIBr, X = CI d RF=CFC~,X=CF~ d &=CFCh,X=CI 方案 5 各种全盐素烷 (CF,Br,, CFBr,Cl, CFCl,, CF,Br)用于合成这些氟化吡唑,显示了该方法的多功能性。讨论 J.CHEM. SOC. PERKIN TRANS. 1 1992 的烷基化提供了在全氟烷基卤化物与亚磺酰基阴离子前体反应中存在中间体全氟烷基自由基的证据 然而,众所周知,二硫化物很容易还原为硫代离子,并且通过 SR 从硫代酸盐和 CF,Br 中形成三氟甲基硫化物,“溴氯二氟甲烷和苯硫代苯酯反应,通过离子途径得到溴二氟甲基苯硫醚(见方案7)的过程,对这一过程有所了解。该化合物的形成与对硫-硫键的直接自由基攻击(方案 8)一致,而不是与离子途径(方案 7)一致,这是由于还原剂对该键的初始还原性裂解而产生的。方案 7 SO,'-+ CF,BrCI -CICF,' + Br-+ SO,方案 8 1,1,2-三氯三氟乙烷与二苯二硫醚反应得到具有两个相邻氯原子的化合物 8(见方案 9),碳-氯键的裂解发生在两个双氯原子之一上,与已知的 1,1,2-三氯三氟乙烷的均裂一致.36 相比之下,我们早些时候观察到了这种形成, 通过与苯硫代苯反应的离子途径,'具有两个双氯原子的异构体(方案10)。SO2'-+ CF2CICFCI2----+ CF,CICFCI' + C1-+ SO, Scbeme 9 C,H,S-+ CF2CICFC12-C,H,SCI + CICF,CFCI-CICF,CFCI--F,C=CFCI + C1-C,H,SCF,CFCI-+ CF,CICFCI, -C,HSSCF2CFCl2+ ClCF,CFCI-方案 10 因此,由这两种卤化物形成的产物的结构有利于自由基途径(见方案 6)。甲酸(或其钠盐)与二氧化硫(或引入反应中medi~m.~~.~~其伴生碱之一的芳香族底物)在DMF中存在的磺氧基阴离子自由基的存在通过直接本合成可以被认为是对全氟烷烃亚磺酸盐形成的攻击(在没有这些高卤代烷基自由基的二硫化物的情况下(见方案6)。表2)。还观察到三氟甲烷-SO,'-+ RFX RF' + X-+ SO, R,' + RSSR -RFSR + RS' 2RS' -RSSR 方案 6 亚磺酸盐的形成也已观察到三氟甲烷、甲酸钠和二氧化硫.37 在与芳香族二硫化物的反应中,未检测到原子核的全氟烷基化。然而,全氟烷基自由基对苯胺和酚类的侵蚀已被观察到~erved.~**~~弱硫-硫键是这些二硫化物中反应性最强的位点.J. CHEM. SOC. PERKIN TRANS. 1 1992 3373 表 1 吡唑类分析:%发现 (%必需) ~~~ Compd. Yield (%) M.p. (“C) 6, Formula C H N 34.6 1.05 13.213.75 169.5-170.5 -44.9 cl 2H4C12F6N4S (-63.8) (34.22 0.96 13.30) 13b 90 162.5-1 63.5 -24.3 C,,H,BrCl,F,N,S 30.0 0.75 11.4 (-63.8) (29.90 0.84 1 1.62) 13C 24 191.5-193 -18 C, ,H,BrCl,F,N,S 29.4 0.75 11.0 (-63.8) (28.91 0.8 1 11.24) 13d 84 190-193 -21.4 12H4C14F4N4S 3 1.6 0.85 12.4 (-63.8) (31.74 0.89 12.40) 14p 72 192-194 -45 c,,H,Cl,F3N,S 34.0 1.o 14.4 (34.08 1.04 14.45) 14b 53 163.5-165 -24.3 C, ,H,BrCl,F,N,S 29.5 0.9 11.9 (29.46 0.90 12.49) 14 71 192-193 -17.9 C, H,BrCl,FN,S 28.6 0.9 11.9 (28.42 0.87 12.05) 14 64 189- 19 1 -21.4 C, ,H,Cl,FN,S 3 1.65 0.9 13.1 (31.42 0.96 13.3 1) ~~~~ ~~ ~~ a SRF,如有必要,括号内为 C6H2Cl,CF。用经典方法制备。表 2 RFX 还原剂前驱体 亚磺酸盐 TP (%)“ _____~ _____~~ ___~ C8F,,I HC0,Na SO2 C8F1 ,SO,Na 15 83 C,F,I HC0,Na NaHSO, C,F,SO,Na 16 55 C,F,I HC0,H NaHSO, 16 55 C,F,I HC0,H C,F,I HC0,HCl, HC0,Na CF,BrCl HC0,H Na,S,O, Na,SO,SO,NaHSO,16 16 CFCl,SO,Na 17 CF,ClSO,Na 18 53 29 44 38 @TP 高卤素烷烃的转化百分比。分离收率,转化率100%。结论 在用于制备全氟烷基亚磺酸盐(由全氟烷基卤化物和磺氧基化物阴离子自由基前体)的反应介质中引入二硫化物,得到全氟烷基硫化物,采用温和、安全的方法,使用廉价的试剂。实验性 'H 和 13C NMR 谱图是在 Bruker AM 300 或 AC 200 波谱仪上以 ppm 的下场记录的。在瓦里安 EM360L 或 AC 200 光谱仪上获得 19FNMR,并以 ppm 为单位记录来自三氯氟甲烷(溶剂:CDCl,)。J值以Hz为单位记录。 溴三氟甲烷购自Setic Labo,碘三氟甲烷购自Fluorochem Ltd.,二甲基甲酰亚胺、吡啶和有机反应物购自Aldrich(使用前蒸馏),锌、磷酸氢钠购自Prolabo,羟甲磺酸钠和连亚硫酸钠购自Fluka。 吡唑基二硫化物采用文献法制备,二硫代乙酸二乙酯由Fluka化学酯化制得。相应的酸。将全氟丁基碘化物(3.5g,10mmol),羟基甲磺酸钠(4g,26mmol),二苄基二硫醚(2.5g,10mmol)在DMF(10cm3)和水(0.5cm3)中的苄基PerfIuorobutyl Sulfide 4.-A混合物在室温下搅拌6小时。将混合物用水(100 cm3)稀释并用乙醚萃取。提取物用5%盐酸水溶液(2×20cm3)和10%碳酸钠水溶液洗涤,干燥(MgS04)并蒸发,得到标题化合物(0.6g,17%);22 b.p. 92 “C/17 Torr *;~5~7.3(3 h, s) 和 4.2 (2 h, s);SF -82.5 (3个文件), -88.8 (2个文件), -121.5 (2个文件) and -126.5 (2个文件)。全氟辛基碘化物(5.5g,10mmol),连亚硫酸钠(3g,17mmol),磷酸氢钠(3g,21mmol)和二甲基二硫醚(1g,10.6 mmol)在DMF(10cm')和水(5 cm3)中搅拌6小时,待处理后得到标题化合物(0.9g,20%);22 b.p. 44OC/lOTorr;SH2.4;SF(SCF2)-92.3.将全氟己基碘化物(4.5g,10mmol),羟基甲磺酸钠(4g,26mmol)和二苯基二硫醚(2.2g,10mmol)的全枉己基苯硫醚6.-A混合物在DMF(10cm')和水(0.5cm3)中搅拌12小时,在处理后得到全氟己基苯硫醚(1.7g,40%);b.p.99 “C/18 Torr;S,(SCF,) -87.2.丁基PerJIuorohexyl Sulfide 7.-用二丁基二硫醚(1.5g,10mmol)重复上述实验,得到标题化合物(0.9g,22%);b.p. 65 OC/19 Torr;aH(SCH2)2.7 (米);G,(SCF,) -92.3.将1,1,1,2,2 tr@uoroethyl-三氯三氟乙烷(3.8g,20mmol),二苯二硫醚(4.4g,20mmol),连亚硫酸钠(7g,40mmol)和磷酸氢二钠(6g,40mmol)在DMF(20cm3)和水(10cm3)中搅拌6小时,在蒸气蒸馏和修整后得到标题化合物(2.7g, 52%);39 b.p.55 “C/0.4 托尔;SF -63.3 (2 F, d, J 14.2), -89 (t, 1 F).将含有羟基甲磺酸钠(Ron-galiteo)(15.5 g,100 mmol)和二苯二硫醚(5.5 g,25 mmol)的混合物的氯氟甲基苯基磺醚9.-A厚玻璃烧瓶在DMF(30 cm')和水(2 cm3)中抽真空并保持在20“C。然后将混合物在溴氯二氟甲烷的压力(1.7bar)下搅拌6小时。之后,将混合物用水(100cm3)稀释并用乙醚萃取。提取物用5%盐酸(2×20cm')和10%碳酸钠水溶液洗涤,干燥* 1 Torr z 133 Pa.(MgSO,)并蒸发得到标题化合物(3.5g,72%);“ b.p. 71”C/25 Torr;d,(SCF,)-27.(氯二呋喃甲基1硫代)乙酸乙酯 10.-用2,2'-二硫代二乙酸二乙酯(5.9g,25mmol)重复上述实验,得到标题化合物(3.3g,65%);b.p. 81 “C/25 Torr;a,., 4.23 (2 H, q, J 10.5)、3.75 (2 H, s) 和 1.3 (3 H, t);d~(sCF2)-27;v,,,/cm-' 1718;m/z 204, 206 (M+), 169 和 1 19.5-氨基-3-氰基-1-(2,6-二氯-4-三甲基苯基)-4-三甲基硫基-1 H-吡唑 13a.-方法 1.向双-5-氨基-3-氰基-1-(2,6-二氯-4-三氟甲基苯基)吡唑-4-y1二硫醚11(2g,2.9mmol)在DMF(120cm3)中的溶液中加入聚四氟乙烯包衣高压釜(500cm3)中,加入磷酸氢二钠=12H,O(3.05g,9mmol)的溶液,在蒸馏水(60cm3)中,搅拌下,加入连二亚硫酸钠(1.48g,9.5mmol)。关闭后,高压灭菌器用溴三氟甲烷(12-1 3 bar)加压。在25“C下在此压力下搅拌(1000rpmRushton涡轮机)2小时后,打开高压釜,并将搅拌后的反应混合物用水(500cm3)和乙醚(500cm3)稀释。分离、干燥(MgSO)并过滤空灵相。在减压下除去乙醚,得到黄色油,在100°C下进行真空泵以除去进一步的挥发性物质。将残留物通过含有硅胶(320g)的雷电色谱柱,用二氯甲烷洗脱,得到标题化合物(1.8g,75%);m.p.169.5-170.5“C. 方法 2.将二硫化物(4g,5.9mmol),甲酸钠(1.16g,17.1mmol),DMF(20cm3)和二氧化硫(1.45g,22.8mmol)依次通入高压釜中,搅拌混合物并在60°C加热。 引入溴三氟甲烷(12-13 bar),并将混合物在此压力下搅拌4小时,得到标题化合物(4.1克,85%)。将5-氨基-4-溴二甲基噻吩硫基-3-氰基-1-(2,6-二氯-4-三氟甲基1苯基)-1 H-吡唑13b.-将连二亚硫酸钠(0.78g,4.5mmol)和磷酸氢二钠(0.64g,4.5mmol)在水(20 cm3)中的溶液加入到二硫化物11(1.94g,3mmol)在DMF(75 cm3)和水(5 cm3)中的搅拌溶液中。加入二溴二氟甲烷(1.89g,9mmol)后,将反应混合物在环境温度下搅拌17小时,然后倒入水(185cm3)上。如13a所述的检查,得到标题化合物(1.31g,90%);m.p.162.5-163.5“C;m/z (IE) 模式:482(父 35C137C179Br 和 35C1281Br)和 351(父 35C1281Br)。5-氨基-4-溴氯基甲基硫基-3-氰基-1-(2,6-二氯-4-三基甲基苯基1)-1 H-吡唑 13c.-二亚硫酸钠 (1.将92g,ll mmol)和磷酸氢二钠(1.56g,11mmol)然后加入水(45 cm3)加入到双-5-氨基-3-氰基-L-(2,6-二氯-4-三氟甲基苯基)吡唑1-4-基二硫醚11(5.1 1 g,7.3 mmol)在DMF(115 cm3)中的搅拌溶液中。发生无机反应物的部分溶解。然后加入一份氯二溴氟甲烷(4.96 g,2 1.9 mmol),然后加入额外量的DMF(75 cm3)以得到均匀的混合物。将其在环境温度下搅拌1.6小时,然后倒入水(450cm 3)上。如13a所述的检查得到标题化合物(1.76 g,24%),熔点191.5-193“C;m/z 498 (IE)(父代为 35C1,37C179Br 和 35C138'Br)和 351(母代 'C1、7C179Br 减去 CF79Br3 7C1)。将5-氨基-3-氰基-4-二氯Jluoromethylthio-1-(2,6-dichloro- 4-trijluorornethylphenyl)-lH-吡唑13d-连亚硫酸钠(3.96 g,23 mmol)、磷酸氢二钠(3.23 g,22 mmol)和氟三氯甲烷(3.9 g,28 mmol)加入J. CHEM. SOC. PERKIN TRANS. 1 1992,搅拌到二硫化物11(4 g,5.7 mmol)的DMF(178 cm3)和水(89 cm3)中。将该混合物在15-17“C下搅拌1小时,然后倒入冰水(1600cm3)中并进一步搅拌30分钟。滤去白色固体,用水(800 cm3)洗涤并干燥,得到标题化合物(4.34g,84%),熔点190-193“C.5-氨基-4-溴二聚甲硫基-3-氰基-1-(2,4,6-三氯苯基1)-1 H-吡唑 14b.-连亚硫酸钠(0.42g,2.4 mmol)和磷酸氢二钠(0.34 g,2.4 mmol),然后加入水(5 cm3)和二溴二氟甲烷(1.01 g,4.8 mmol),搅拌至二硫醚12(1.0g,1.6 mmol)在DMF(10 cm3)中的溶液中。由于搅拌的混合物保持不均相,因此进一步加入DMF(15 cm3)和水(5 cm3)。然后将所得溶液,含有少量半固体,在环境温度下搅拌2.7小时。如13a所述的检查得到标题化合物为淡黄色固体(0.76 g,53%);MP163.5-165“C;m/z (IE) 448(父代为 35C1,37C179Br 和 35C1381Br)和 319(母代 35C1237C179Brminus CF,79Br)。将5-氨基-4-溴氯JEuoro甲硫基-3-氰基-1-(2,4,6-三氯苯基1)-1,H-吡唑14c.-连亚硫酸钠(1.23g,7mmol)和磷酸氢二钠(1g,7mmol),然后加入水(30cm3)和氯二溴氟甲烷(3.19g,14.1mmol)中,搅拌加入到二硫化物12(3.0g,4.7mmol)在DMF(75cm3)中的溶液中。将所得混合物在环境温度下搅拌40分钟,然后将其倒入水(300cm 3)中。最初用乙醚(300 cm3)萃取混合物,然后用二氯甲烷萃取。在硅胶柱上对在空灵提取物减压下蒸发得到的材料进行雷电色谱,得到相对不纯的产物。二氯甲烷提取物得到含有DMF的产物,在90-100“C的温度下通过旋转蒸发除去DMF。将所得残留物溶入二氯甲烷中,并用水萃取。在硅胶柱上浓缩干燥的有机相和闪电色谱法,得到亮黄色标题化合物(0.5g),熔点192-193“C;总产品收率,包括第一部分为71%;m/z (IE) 464 (母体含 35C1337C179Br 和 35C1,8 'Br)、319(母体 35C1337C179Br 减去 CF79Br35C1).5-氨基-3-氰基-4-二氯甲基硫基-1-(2,4,6-三氯苯基1)-1 H-吡唑 14d.-锌粉 (60 g, 0.92 mol) 加入到二硫化物 12 (150 g, 0.2 mol) 的 DMF (1 125 cm3) 中的搅拌溶液中。向该混合物中加入含有二氧化硫(60.6g,0.95mol)的DMF(160cm3)溶液,然后加入氟三氯甲烷(290g,2.1mol)约30分钟后注意到轻微的放热(最高温度30“C)。将反应混合物在环境温度下搅拌过夜,然后过滤并滴加到冰水(14dm 3)中2小时。收集所得固体,用水彻底洗涤并干燥,得到黄色范围的固体(185克),在甲苯-己烷重结晶后得到标题化合物(123克,64%),m.p.187-189“C.将PerJIuorooctanesulJinate 15.-甲酸钠(2g,29mmol)加入到含有二氧化硫(2g,31mmol)的搅拌DMF(50cm3)中,得到蓝色混合物。然后将碘全氟辛烷(5.5g,10mmol)加入到混合物中,随着气体逸出而变成黄橙色。3小时后,通过I9F NMR分析混合物。碘化物几乎完全转化为亚磺酸盐15(6,CF,SO,--132)。过滤后,减压除去DMF,残留物用水(20cm3)稀释。滤去固体,氯(1 dm3,44 mmol)通过J.CHEM. SOC. PERKIN TRANS. i 1992滤液鼓泡,倾析后得到全氟辛烷磺酰氯(4.3 g,83%)40。当19F NMR分析显示碘化物转化为亚磺酸盐(6,CF,SO,--131)时,将16-甲酸钠(1.2g,18mmol),亚硫酸氢钠(2.1g,20mmol)和碘全氟丁烷(3.5g,10mmol)在DMF(20cm3)中搅拌10小时。在常规处理(见15)后,通过倾析获得全氟丁烷磺酰氯4'(1.3g)(产率78%)。用各种混合物重复实验:甲酸(1.2g,26mmol)和亚硫酸氢钠(2.1g,20mmol)(转化率55%);甲酸(1g,22mmol)和焦亚硫酸钠(1.9g,10mmol)(转化率53%);甲酸(1g,22mmol)和亚硫酸钠(2.5g,20mmol)(转化率29%)。二氯甲基甲磺酸钠 17.-甲酸钠(1.4 g,21 mmol),然后是氟三氯甲烷 (2.将7g,20mmol)加入到含有二氧化硫(2g,3I mmol)的DMF(20cm3)中,搅拌。3 h后,用19FNMR分析混合物:氯化物转化为亚磺酸盐(6,CFS02--66)的百分比为44%.4'将氯二甲基二氯甲磺酸钠18.-溴氯二氟甲烷(1.65 g,10 mmol)缩合成DMF(20 cm3),然后加入甲酸(1.2 g,26 mmol)和亚硫酸氢钠(2.1 g,20 mmol)。搅拌14小时后,通过“F NMR”分析混合物:溴化物转化为亚磺酸盐(6,CF,SO,--69)的转化率为38%.33致谢 我们感谢Ongar(英国)和Triangle Park(美国)罗纳-普朗克研究中心在将该方法扩展到吡唑系列方面的合作。参考文献 1 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 1971,71,525.2 R. Filler in Organojluorine Chemicals and their Industrial Appli- cations, R. E. Banks, ed., Ellis Horwood, Chichester, 1979.3 E. Kuhle 和 E. Klauke,Angerv。Chem., Int. Ed. Engl., 1977, 16,735.4 (a) L. M. Yagupol'skii in Aromaticheskie i Geterotsiklicheskie Soedineniya s Ftorsoderzhashchimi Zamestitelyami, Naukova Dumka, Kiev, 苏联, 1988年;(6) M.A. McClinton 和 D. A. McClinton,四面体,1992,48,6555。5 R. N. Haszeldine, B. Hewitson 和 A. E. Tipping, J. Chem. SOC., Perkin Trans. 1, 1974, 1706.6 W. E. Truce, G. H. Birum 和 E. T. McBee, J.Am. Chem. SOC., 1952, 74, 3594.7 W. A. Sheppard, J.Org. Chem., 1964,29,895.8 秒Andreades, J. F. Harris 和 W. A. Sheppard, J. Org. Chem., 1964, 29, 898.9 A. Haas 和 U. Niemann,Chem. Ber.,1977,110,67。10 W. Gombler 和 G. Bollman,J. 氟化学,1984,34475。11 E. H. Man, D. D. Coffman 和 E. L. Muetterties, J. Am. Chem. SOC., 1959,81,3575.12 J. F. Harris, J. Org. Chem., 1967,32,2063.13 V.V.奥尔达、L.M.亚古波尔斯基、V.F.比斯特罗夫和A.U.斯捷潘扬茨、Zh.Obshch。Khim.,1965,35,1628。14 L.M. Yagupol'skii, N. V. Kondratenko 和 V. P. Sambur, Synthesis, 1975,721.15 D. C. Remy, K. E. Rittle, C. A. Hunt 和 M. B. Fredman, J. Org. Chem., 1976,41,1644.16 J. H. Clark、C. W. Jones、A. P. Kybett、M. A. McClinton、J. M. Miller、D. Bishop 和 R. J. Blade, J.Fluorine Chem., 1990,48, 249.17 R. N. Haszeldine, R. B. Rigby 和 A. E. Tipping, J. Chem. SOC., Perkin Trans. 1, 1972,2180.18 V. I. Popov, V. N. Boiko 和 L. M. Yagupol'skii, J.Fluorine Chem., 1982,21,365.19 N. V. Ignatev, V. N. Boiko 和 L. M. Yagupol'skii, Zh. Org. Khim., 1985,21,653.20 C. Wakselman 和 M. Tordeux, J. Chem. SOC.,Chem. Comm., 1984, 793.21 C. Wakselman 和 M. Tordeux, J. Org. Chem., 1985,50,4047.22 M. Tordeux, C. Francese and C. Wakselman, J. Fluorine Chem., 1989,43,27.23 A. Sekiya and T. Unemoto, Chem. Lett., 1982, 1519.24 J. L. Clavel、B. Langlois、E. Laurent 和 N. Roidot,《磷、硫和硅》,199 1,59,169。25 A. E. Feiring, J.氟化学, 1984,24, 191.26 T. N'Guyen, M. Rubinstein 和 C. Wakselman, J.Org. Chem., 1981, 46,1938.27 C.瓦克塞尔曼,M.Tordeux, J. L. Clavel 和 B. Langlois, J. Chem. SOC.,Chem. Commun., 1991,993.28 C. Wakselman 和 M. Tordeux, J. Chem. SOC.,Chem. Commun., 1987, 1701.29 M. Tordeux, B. Langlois and C. Wakselman, J. Chem. Soc., Perkin Trans. 1, 1990,2293.30 H. W. Gibson, Chem. Rev., 1969,69,673.31 0.L. Andre and G. Gelbard, Bull, SOC. Chim., 1986,565.32 C. Wakselman 和 M. Tordeux, Bull.SOC. Chim., 1986,868.33 M. Tordeux, B. Langlois and C. Wakselman, J.Org. Chem., 1989,54, 2452 34 W. Y. Huang, J.Fluorine Chem., 1986,32, 179.35 I. Rico, D. Cantacuzene 和 C. Wakselman, J. Org. Chem., 1983,48, 1979.36 D.J.Burton和L.J.Kehoe,Telrahedron Lett.,1966,5163。37 L. Gilbert,个人通信。38 J. L. Clavel, B. Langlois, R. Nantermet, M. Tordeux and C. Wakselman, Eur. Pat. 374,061 (Chem. Abstr., 1991, 114,5483s)。39 S. Piettre, C. De Cock, R. Mereny 和 H. G. Viehe, Tetrahedron, 1987,43,4319.40 H. Blancou, P. Moreau 和 A. Commeyras, J. Chem. SOC., Chem. Commun., 1976,885.41 W. Y. Huang, B. N. Huang 和 J. L. Chen, 化学学报, 1986,44,45.论文 2/047651 收稿日期 1992 年 9 月 4 日 录用日期 1992 年 9 月 15 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号