...
首页> 外文期刊>Neurochemical research >The Protective Effect of Epoxyeicosatrienoic Acids on Cerebral Ischemia/Reperfusion Injury is Associated with PI3K/Akt Pathway and ATP-Sensitive Potassium Channels
【24h】

The Protective Effect of Epoxyeicosatrienoic Acids on Cerebral Ischemia/Reperfusion Injury is Associated with PI3K/Akt Pathway and ATP-Sensitive Potassium Channels

机译:The Protective Effect of Epoxyeicosatrienoic Acids on Cerebral Ischemia/Reperfusion Injury is Associated with PI3K/Akt Pathway and ATP-Sensitive Potassium Channels

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolite of arachidonic acid, have been demonstrated to have neuroprotective effect. Phosphatidylinositol 3-kinase (PI3K)/Akt and ATP-sensitive potassium (KATP) channels are thought to be important factors that mediate neuroprotection. However, little is known about the role of PI3K/Akt and KATP channels in brain after EETs administration. In vitro experiment, oxygen-glucose deprivation (OGD) was performed in cultured rat cerebral microvascular smooth muscle cells (SMCs) for 4 h. The effect of 14,15-EET on OGD induced cell apoptosis was examined after reoxygenation. Western blot and real-time PCR were used to analyze the expression of Kir6.1, SUR2B (two subunits of KATP channels) and p-Akt on cerebral microvascular SMCs. In vivo experiments, we use 12-(3-adamantan-1-yl-ureido)-dodecanoic acid AUDA, a specific soluble epoxide hydrolase (sEH) inhibitor to confirm the effect of EETs indirectly. Rats were injected intraperitoneally with AUDA before being subjected to middle cerebral artery occlusion (MCAO). We detected the apoptosis and the expression of p-Akt, Kir6.1 and SUR2B in ischemic penumbra. The results showed that EETs protect against cerebral ischemia/reperfusion (I/R) injury and upregulated the expression of p-Akt and Kir6.1 in both of ischemic penumbra and OGD induced cerebral microvascular SMCs. The protective effect was inhibited by Wortmannin (a specific PI3K inhibitor) and Glib (a specific KATP inhibitor) respectively in vitro experiment. In conclusion, these results suggested that the protective effect of EETs on cerebral I/R injury is associated with PI3K/Akt pathway and KATP channels. Furthermore, the PI3K pathway may contribute to mediating KATP channels on cerebral microvascular SMCs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号