首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Acylnitrilium ion initiated spiroannulations in heterocycle synthesis: an application directed toward the total synthesis of theLycopodiumalkaloid (±)-serratine
【24h】

Acylnitrilium ion initiated spiroannulations in heterocycle synthesis: an application directed toward the total synthesis of theLycopodiumalkaloid (±)-serratine

机译:酰基硝基离子引发的螺环化在杂环合成中的螺旋环化:一种针对石蒜类生物碱 (±)-锯齿碱全合成的应用

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 Acylnitrilium ion initiated spiroannulations in heterocycle synthesis: an application directed toward the total synthesis of the Lycopodiumalkaloid ( ? )-serratine Gregory Luedtke and Tom Livinghouse*9t Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 5971 7, USA A concise synthesis of a prospective tricyclic intermediate en route to the Lycopodium alkaloid ( k )-serratine is described which involves the consecutive utilization of an acylnitrilium ion initiated spiroannulation and intramolecular Michael addition. Alkaloids belonging to the Lycopodium family have remained 0 an enduring challenge for efficient chemical synthesis. Although a number of these alkaloids possess intriguing pharmacology, the ongoing interest in total synthesis would appear to be stimulated at least as much by the structural complexity of these substances and the attendant strategic imperatives for skeletal construction.Despite the continuing activity in this area, relatively little progress has been reported with regard to the 7 synthesis of the irregular alkaloids belonging to the serratinane isubgroup. With the exception of (?)-serratinine 1 and the corresponding 8-deoxy derivative, each of which have been synthesized once previously, no completed syntheses of alkaloids in this category have appeared. 0-TBDMS -OH 0 4 5 Scheme tH4-oH0 1 2 We have previously shown that cyclizations initiated by acylnitrilium ions can provide access to a wide variety of heterocyclic system^.^ In addition, we have demonstrated that this heteroannulation method can facilitate unusually efficient syntheses of the erythrinane skeleton5 as well as the Orchidaceae alkaloid dendrobine.6 Our interest in ( k )-serratine 2 'was stimulated by the possibility that the essential tricyclic core of this Lycopodium alkaloid could be derived from a simple arene nucleus uia sequential utilization of an acyl- nitrilium ion initiated spiroannulation and intramolecular 1,4-addition (Scheme 1).In this communication we report the successful implementation of this strategy. The key isonitrile 4a that was employed in this investigation was prepared by sequential formylation/dehydration (i, EtOCHO; ii, POC1,-Et,N, THF, 0 "C) of 3-4-(tert-butyl- dimethylsiloxy)-2-methoxyphenylpropanamine 3.Acylation of 3 with the acyl chlorides 8a-f (CH2C1,, room temp.) was found to proceed in close analogy with previous examples 4-6 to provide the intermediate a-ketoimidoyl chlorides 9a-f in ca. quantitative yield (NMR). Exposure of 9a-f to AgBF, (1.5 equiv.) in ClCH,CH,Cl-CH!,Cl, (1 :1) at -70 "C resulted, without exception, in the immediate precipitation of AgCl signalling the generation of the corresponding transient -f Fellow of the Alexander von Humboldt Foundation 1993-1995. acylnitrilium ions. In contrast to most previously reported example^,^-^ cation interception by the pendant carbon centred nucleophile did not occur rapidly at -78 "C.Optimally, pre- formed solutions of the reactive intermediates were subse-quently warmed to -20 "C and maintained at this temperature for 20 h to induce spirocyclization. By way of this procedure the spirocyclohexa-2,5-diene-1,3'-(3',4',5',6'-tetrahydropyridin)-ones 6a-could be obtained on a preparative scale in 80- 84 purified yield. It is of interest that cyclization of 9funder an analogous set of reaction conditions resulted in only a modest yield (55) of the desired spirocyclic intermediate 6f. Presumably, the enhanced propensity of the P-ketosulfonyl moiety of 9fto enolize was responsible for the degradation of spirocyclization efficiency in this instance. In this connection, the successful conversion of 9b-f to 6b-f constitutes the first reasonably comprehensive series of acylnitrilium ion cycliz- ations involving substrates that possess readily enolizable sites a-to the carbonyl function.The predisposition of the spirocyclic intermediates 6b-e to undergo intramolecular 1,4-addition was subsequently exam- ined. Several attempts to convert 6c into the corresponding tricycle 10a uia free-radical intermediates under reductive conditions (Bu,SnH)' led only to the production of 6b albeit in excellent ( > 90) yield. By way of contrast, base-mediated cyclization of 6d and 6e gave more encouraging results. In an initial experiment, exposure of 6d to NaH (1.1 equiv.) in DMF O "C(10 min)+25 "C (8 h) followed by protonolysis (AcOH, 1.1 equiv.) afforded the unstable a-phenylthioketone 10b in good yield.We suspected that the observed instability of 10b 2370 J. CHEM. SOC. PERKIN TRANS. I 1995 r 1 8a-f 9a-f a R =But bR=Me 6a (82) c R = CHC12 d R = CH2SPh 6r (80) e R = CH2SMe 6d (83) f R=CH2SOZPh 6e (84) 6f (55) 0 i, EtOCHO, 25 OC; ii, POC1,-Et,N, THF, 0 "C; iii, CH,Cl, or CDCl,, 25 "C; iv, AgBF, (1.5 equiv.), CICH,CH,Cl-CH,Cl,, -78 "C--20 "C might be a consequence of initial tautomerization involving the sensitive g-keto imine moiety. Accordingly, this bifunctional array was derivatized by alkylative protection in situ. To this end, cyclization of 6d (NaH-DMF, 0 "C-+25 "C) followed by enolate interception SEM-Cl (1.1 equiv.), -60 "C-25 "C furnished the tricyclic imine 7d in 96 purified yield.Cyclization of 6ein a similar manner provided 7e in 98 yield.$ Although 6f could be induced to undergo an analogous cyclization, 6b proved resistant toward base-mediated intra- molecular Michael addition. i 10a -+ 6c >go 6b '0 OSEM 10a R=H 7d R=Ph lob R=SPh 7e R=Me Reagents and conditions: i, Bu3SnH, PhH, reflux; ii, NaH (1.1 equiv.), DMF, 0 "C+25 "C; iii, NaH (1.1 equiv.), DMF, 0 "C-+25 "C; iv, SEM-CI (1.1 equiv.), -60 "C+25 "C At least three features of the preceding cyclizations are worthy of comment. These studies have shown that a variety of functionally varied a-keto imidoyl chlorides can serve as effective precursors to synthetically viable acylnitrilium ions; intramolecular capture of the enolates derived from 6d and 6e by the least substituted (and most electrophilic) cyclohexa- dienone P-carbon is completely selective; and the in situ enolate trapping protocol gives rise to the functionally well differentiated intermediates 7d and 7e.Studies directed toward the stereodefined annulation of the serratinane D ring and the completion of the synthesis of (f)-serratine 2 are underway. Progress in these areas will be disclosed in due course. $The tricyclic imines 7d and 7e were found to undergo slow decomposition at room temperature but could be stored indefinitely in a benzene matrix under argon at -20 "C. Experimental 2-Methoxy-2'-methylsulfanylacetylspiro cyclohexa-2,s-diene-1,3'-(3',4',5',6'-tetrahydropyridin) -4-one 6e An oven-dried NMR tube fitted with a rubber septum was purged with Ar and then charged with compound 4a (0.305 g, 1.O mmol), methylsulfanylacetyl chloride (1 37 mg, I.1 mmol) and CDCl, (1.0 cm3). The coupling reaction, monitored by NMR, was found to be complete after 3 h. After the volatile components had been removed under reduced pressure from the imidoyl chloride, the crude material was diluted with CH,Cl, (4.5 cm3), and l72-dich1oroethane (4.5 cm3) and cooled to -78 "C. The solution was then added dropwise via a cannula to a stirred solution of AgBF, (0.50 mol dm-, in 1,2-dichloro- ethane; 3.0 cm3, 1.5 mmol, 1.5 equiv.) and CH,Cl, (3.0 cm3) maintained at -70 "C. After the addition, the reaction mixture was stirred for 1 h at -70 "C and then maintained at -20 "C for 20 h whereupon it was quenched with 10aqueous KHCO, (30 cm3).The resulting white-grey slurry was subsequently filtered through a pad of Celite. The organic layer was separated and the aqueous layer was extracted with CH,Cl, (4 x 20 cm3). The combined organic layer and extracts were washed with brine (65 cm3), dried (Na,SO,) and concentrated under reduced pressure. Chromatography of the residue on Florisil(50 ethyl acetate-CH,Cl, for elution) provided 6e as a viscous oil (0.235 g, 84); aH(CDC1,) 6.59 (d, J 9.9, 1 H, CHSH), 6.23 (dd, J9.9, 1.6, 1 H, CH=CH), 5.63 (d, J 1.2, 1 H, CH,OC=CH), 4.15-4.07 (m, 1 H, HCHN=C), 3.95-3.84 (m, 1 H, HCHNX), 3.67(s,3 H,0CH3),3.62(d,J13.2, 1 H,O=CCHHSCH,), 3.47 (d, J 13.2, 1 H, MCHH-SCH,), 2.14 (m, 1 H, HCHCH,), 1.97 (s, 3 H, SCH,) and 1.86-1.73 (m, 3 H, HCHSH,); G,(CDCl,) 191.7 (C), 187.3 (C), 177.8 (C), 161.7 (C), 144.6 (CH), 128.3 (CH), 101.7 (CH), 55.9 (CH,), 50.0 (CH,), 45.4 (C), 36.7 (CH,), 33.7 (CH,), 18.0 (CH,) and 15.6 (CH,); v,,,(film)/cm-' 3365, 2958, 2930, 2857, 1693, 1658, 1637, 1592, 1539,1504,1464,1392,1362,1324,1286,1260,1224,1179,1105, 1017,980,945,841 and 798; m/z (EI) 279,191,164, 137,77 and 61 Found (HRMS): M+, 279.0929.Calc. for C,,H,,NO,S: M -t , 279.09291. 10-Methoxy-6-methylsulfanyl-5- (2'-trimethylsilylethoxy)-methoxy -2,3,5,6,6a,7-hexahydro-lH-indeno 1,7a-b pyridin-8- one 7e To a slurry of NaH (12 mg, 0.5 mmol, 1.1 equiv.) in DMF (3.0 cm3) at 0 "C was added dropwise over 10 min a solution of 6e (127 mg, 0.45 mmol) in DMF (6.0 cm3).The resulting mixture was allowed to warm to 25 "C over several hours. After 12 h the mixture was cooled to -60 "C and SEM-Cl(84 mg, 88 pl, 0.5 mmol, I. 1 equiv.) was added to it over 1 min. The reaction mixture was allowed to warm to 25 "C over 2 h whereupon it was poured into water (20 cm3) and extracted with ethyl acetate (4 x 10 cm3). The combined extracts were dried (MgSO,) and evaporated under reduced pressure after which the residue was purified by chromatography on Florisil (50 ethyl acetate- CH,CI, for elution) to provide 7e as a viscous oil (0.180 g, 98). This compound was found to deteriorate over a short amount of time if not stored at -20 "C in a matrix of benzene. Silica gel and alumina were found to be incompatible with this compound: d,(CDCI,) 5.45 (d, J 5.9, 1 H, OCHH-0), 5.33 (s, 1 H, CH,OC=CH), 5.04 (d, J 5.9, 1 H, OCHHO), 3.78- 3.67 (m, 3 H,OCHHCH,), 3.63 (s, 3 H, OCH,), 3.58 (m, 1 H, OCHHCH,), 3.03 (d, J 5.5, 1 H, CHCH,), 2.84 (d, J 17.7, 1 H, CHCHH),2.58(dd,J17.7,6.3Hz, 1 H,CHCHH),2.46(s,3 H, SCH,), 2.13-1.86 (m, 3 H, HCH), 1.58-1.40 (m, 1 H, HCH), 0.92-0.79 m, 2 H, CH,Si(CH,), and -0.03 (s, 9 H, 3 CH,); G,(CDCl,) 195.1 (C), 178.7(C),166.8 (C),150.9(C),131.6 (C), 101.5 (CH), 93.5 (CH,), 47.4 (CH), 47.3 (C),33.3 (CH,), 28.1 (CH,), 20.0 (CH,), 18.2 (CH,), 15.4 (CH,) and -1.4 (CH,); J.CHEM. SOC. PERKIN TRANS. I 1995 v,,,(film)/cm 2949, 1660, 1603, 1506, 1438, 1416, 1346, 1249, 1217, 1148, 1100, 1039, 1007, 948, 859, 836 and 758; m/z (EI) 409, 366, 336, 308, 231, 117, 73, 57 and 43 Found (HRMS): M', 409.1743.Calc. for C,oH,,NO,SSi: M', 409.17431. Acknowledgements Generous support for this research by a grant from the National Institutes of Health (GM 32000-08) is gratefully acknowledged. References 1 (u) W. A. Ayer and G. C. Kasitu, Can. J. Chem., 1989,67, 1077; (b) C. Yu. W. Shen, J. Han, Y. Chen and Y. Zhu, Yaoxue Xuebao, 1982, 17, 795. 2 (a) T. Harayama, M. Ohtani, M. Oki and Y. Inubushi, Chem. Pharm. Bull., 1975, 23, 1511; (b) T. Harayama, M. Ohtani, M. Oki and Y. Inubushi, J. Chem. SOC.,Chem. Commun., 1974,827. 3 (u)T. Harayama, M. Takatani and Y. Inubushi, Chem. Phurm. Bull., 237 1 1980, 28, 2394; (b) T. Harayama, M. Takatani and Y. hubushi, Tetrahedron Lett., 1979,20,4307. 4 (a) G. Luedtke, M. Westling and T. Livinghouse, Tetrahedron, 1992, 48, 2209; (b) M. Westling and T. Livinghouse, J. Am. Chem. SOC., 1987, 109, 590; (c) M. Westling and T. Livinghouse, Tetrahedron Lett., 1985, 26, 5389. 5 M. Westling, R. Smith and T. Livinghouse, J. Org. Chem., 1986, 51, 1159. 6 C. H. Lee, M. Westling, T. Livinghouse and A. C. Williams, J. Am. Chem. SOC.,1992,114,4089. 7 (a) Y. Inubushi, H. Ishii and T. Harayama, Chem. Pharm. Bull. (Tokyo), 1967, 15,250; (b) T. A. Blumenkopf and C. H. Heathcock, in The Alkaloids, ed. S. W. Pelletier, John Wiley and Sons, New York, 1985, p. 230. 8 H. Ishibashi, T. S. So, T. Sato, K. Kuroda and M. Ikeda, J. Chem. SOC.,Chem. Commun., 1989,762. Puper 5/04398K Received 6th July 1995 Accepted 8th August 1995
机译:J. CHEM. SOC. PERKIN TRANS. 1 1995 杂环合成中的酰基硝基离子引发的螺旋环化:针对石蒜生物碱全合成的应用 ( ?-serratine Gregory Luedtke 和 Tom Livinghouse*9t 蒙大拿州立大学化学与生物化学系,博兹曼,MT 5971 7,美国 描述了一种通往石蒜生物碱 (k )-锯齿碱的预期三环中间体的简明合成,该合成涉及连续利用酰基氮离子引发的螺旋环化和分子内迈克尔加成。属于石蒜科的生物碱一直是高效化学合成的持久挑战。尽管这些生物碱中有许多具有耐人寻味的药理学,但这些物质的结构复杂性以及随之而来的骨骼构建战略要求似乎至少会激发对全合成的持续兴趣。尽管在这一领域继续开展活动,但在属于沙雷烷i亚群的不规则生物碱的7合成方面,报告的进展相对较少。除了 (?)-丝鹞酐碱1和相应的8-脱氧衍生物,每个衍生物之前都合成过一次,没有出现该类别中生物碱的完整合成。0-TBDMS -OH 0 4 5 方案 tH4-oH0 1 2 我们之前已经证明,由酰基硝基离子引发的环化可以提供多种杂环系统的通路^.^ 此外,我们已经证明这种异环化方法可以促进赤藓红素骨架5以及兰科生物碱树斛的异常有效的合成.6 我们对 ( k )-锯齿碱 2 '的兴趣受到这种石蒜生物碱的基本三环核心的可能性的刺激可由简单的芳烃核uia依次利用酰基-硝基离子引发的螺环化和分子内1,4-加成(方案1)衍生而来。在本函件中,我们报告了该战略的成功实施情况。本研究采用的关键异腈4a是通过3-[4-(叔丁基-二甲基硅氧基)-2-甲氧基苯基]丙胺3的序贯甲酰化/脱水(i,EtOCHO;ii,POC1,-Et,N,THF,0“C)制备的,发现3与酰氯8a-f(CH2C1,室温)的酰化反应与先前的实施例4-6非常相似,以提供中间体a-酮酰亚胺酰氯9a-f。在-70“C下,9a-f暴露于ClCH,CH,Cl-CH!,Cl,(1:1)中的AgBF(1.5当量)无一例外地导致AgCl的立即沉淀,表明产生了相应的瞬态-f亚历山大·冯·洪堡基金会研究员1993-1995。酰基硝基离子。与大多数先前报道的实例^相反,^-^吊坠碳中心亲核试剂的阳离子截留在-78“C.最佳情况下,反应性中间体的预成型溶液随后被加热至-20”C并在该温度下保持20小时以诱导螺环化。通过该方法,可以以80-84%的纯化收率在制备规模上获得螺[环己-2,5-二烯-1,3'-(3',4',5',6'-四氢吡啶)]-酮6a-。有趣的是,在一组类似的反应条件下,9f的环化仅导致所需螺环中间体6f的适度收率(55%)。据推测,在这种情况下,9fto烯醇化的对酮磺酰基部分的增强倾向是导致螺环化效率下降的原因。在这方面,9b-f向6b-f的成功转化构成了第一个相当全面的酰基硝基离子环化系列,涉及具有易于烯醇化位点的底物a-到羰基官能团。随后检查了螺环中间体 6b-e 进行分子内 1,4-加成的易感性。在还原条件下(Bu,SnH)将6c转化为相应的三轮车10a uia自由基中间体的几次尝试只导致了6b的产生,尽管收率很高(>90%)。相比之下,碱基介导的 6d 和 6e 环化给出了更令人鼓舞的结果。在初始实验中,在DMF [O“C(10 min)+25”C (8 h)]中暴露于NaH(1.1当量)中6d,然后进行原生溶解(AcOH,1.1当量)使不稳定的a-苯硫酮10b具有良好的收率。我们怀疑观察到的 10b 2370 J. CHEM. SOC. PERKIN TRANS.I 1995 r 1 8a-f 9a-f a R =But bR=Me 6a (82%) c R = CHC12 d R = CH2SPh 6r (80%) e R = CH2SMe 6d (83%) f R=CH2SOZPh 6e (84%) 6f (55%) 0 i, EtOCHO, 25 OC;ii, POC1,-Et,N, THF, 0 “C;iii, CH,Cl, 或 CDCl,, 25 “C;iv, AgBF, (1.5 equiv.), CICH,CH,Cl-CH,Cl,, -78 “C--20 ”C 可能是涉及敏感 g-酮亚胺部分的初始互变异构化的结果。因此,该双功能阵列通过原位烷基保护衍生化。为此,将6d(NaH-DMF,0“C-+25”C)环化,然后进行烯醇化物拦截[SEM-Cl(1.1当量),-60“C-25”C],以96%的纯化收率获得三环亚胺7d。6ein的环化以类似的方式提供了98%的产率的7e.$虽然6f可以被诱导经历类似的环化,但6b被证明对碱介导的分子内Michael加成具有抗性。i 10a -+ 6c >go% 6b '0 OSEM 10a R=H 7d R=Ph lob R=SPh 7e R=Me 试剂和条件:i,Bu3SnH,PhH,回流;ii, NaH (1.1当量), DMF, 0 “C+25 ”C;iii, NaH (1.1 equiv.), DMF, 0 “C-+25 ”C;iv, SEM-CI (1.1 equiv.), -60 “C+25 ”C 上述环化至少三个特征值得一提。这些研究表明,多种功能多样的a-酮酰亚胺酰氯可以作为合成活性酰基硝基离子的有效前体;通过取代最少(和亲电性最强)的环己二烯酮P-碳对来自6d和6e的烯醇酸盐的分子内捕获是完全选择性的;原位烯醇酸盐捕获方案产生了功能分化的中间体7D和7E。针对锯齿烷D环的定型环化和完成(f)-锯齿烷2合成的研究正在进行中。这些领域的进展情况将在适当时候公布。发现$The三环亚胺7d和7e在室温下发生缓慢分解,但可以在-20“C的氩气下无限期地储存在苯基质中。 实验 2-甲氧基-2'-甲基磺酰乙酰螺[环己烷-2,S-二烯-1,3'-(3',4',5',6'-四氢吡啶)]-4-酮6e 用Ar吹扫装有橡胶隔膜的烘干NMR管,然后用化合物4a(0.305g, 1.O mmol),甲基磺酰乙酰氯(1 37mg,I.1mmol)和CDCl(1.0cm3)。通过核磁共振监测,发现偶联反应在3小时后完成。在减压下从酰亚胺酰氯中除去挥发性成分后,用CH,Cl(4.5 cm3)和l72-二氯乙烷(4.5 cm3)稀释粗料并冷却至-78“C。然后通过套管将溶液滴加到AgBF(0.50 mol dm-,1,2-二氯乙烷溶液;3.0 cm3,1.5 mmol,1.5 mmol,1.5 equiv.)和CH,Cl(3.0 cm3)的搅拌溶液中,保持在-70“C。加入后,将反应混合物在-70“C下搅拌1小时,然后在-20”C下保持20小时,然后用10%KHCO水溶液(30cm3)淬火。随后,通过青石垫过滤产生的白灰色浆料。分离有机层,用CH,Cl,(4 x 20 cm3)萃取水层。将合并的有机层和提取物用盐水(65 cm3)洗涤,干燥(Na,SO,)并在减压下浓缩。在Florisil(50%乙酸乙酯-CH,Cl,用于洗脱)上对残留物进行色谱分析,得到6e作为粘性油(0.235g,84%);aH(CDC1,) 6.59 (d, J 9.9, 1 H, CHSH), 6.23 (dd, J9.9, 1.6, 1 H, CH=CH), 5.63 (d, J 1.2, 1 H, CH,OC=CH), 4.15-4.07 (m, 1 H, HCHN=C), 3.95-3.84 (m, 1 H, HCHNX), 3.67(s,3 H,0CH3),3.62(d,J13.2, 1 H,O=CCHHSCH,), 3.47 (d, J 13.2, 1 H, MCHH-SCH,)、2.14 (m, 1 H, HCHCH,)、1.97 (s, 3 H, SCH,) 和 1.86-1.73 (m, 3 H, HCHSH,);G,(CDCl,) 191.7 (C)、187.3 (C)、177.8 (C)、161.7 (C)、144.6 (CH)、128.3 (CH)、101.7 (CH)、55.9 (CH)、50.0 (CH)、45.4 (C)、36.7 (CH)、33.7 (CH)、18.0 (CH,) 和 15.6 (CH,);v,,,(胶片)/cm-' 3365、2958、2930、2857、1693、1658、1637、1592、1539、1504、1464、1392、1362、1324、1286、1260、1224、1179、1105、1017、980、945、841 和 798;m/z (EI) 279,191,164, 137,77 和 61 [找到 (HRMS): M+, 279.0929.计算值 C,,H,,NO,S: M -t , 279.09291.10-甲氧基-6-甲硫基-5-[(2'-三甲基硅烷乙氧基)-甲氧基]-2,3,5,6,6a,7-六氢-lH-茚并[1,7a-b]吡啶-8-酮7e 在0“C下向DMF(3.0cm3)中的NaH(12mg,0.5mmol,1.1当量)浆液中滴加6e(127mg,0.45mmol)在DMF(6.0cm3)中的溶液超过10分钟。将所得混合物在数小时内加热至25“C。12小时后,将混合物冷却至-60“C,并在1分钟内加入SEM-Cl(84mg,88pl,0.5mmol,I.1当量)。将反应混合物加热至25“C超过2小时,然后将其倒入水(20cm3)中并用乙酸乙酯(4×10cm3)萃取。将合并的提取物(MgSO)干燥并减压蒸发,然后通过氟里西(50%乙酸乙酯-CH,CI,用于洗脱)的色谱法纯化残留物,以提供7e作为粘稠油(0.180g,98%)。发现该化合物如果不储存在-20“C的苯基质中,则会在短时间内变质。发现硅胶和氧化铝与该化合物不相容:d,(CDCI,) 5.45 (d, J 5.9, 1 H, OCHH-0), 5.33 (s, 1 H, CH,OC=CH), 5.04 (d, J 5.9, 1 H, OCHHO), 3.78- 3.67 (m, 3 H,OCHHCH,), 3.63 (s, 3 H, OCH,), 3.58 (m, 1 H, OCHHCH,), 3.03 (d, J 5.5, 1 H, CHCH,)、2.84 (d, J 17.7, 1 H, CHCHH)、2.58(dd,J17.7,6.3Hz, 1 H,CHCHH)、2.46(s,3 H, SCH,)、2.13-1.86 (m, 3 H, HCH)、1.58-1.40 (m, 1 H, HCH)、0.92-0.79 [m, 2 H, CH,Si(CH,),] 和 -0.03 (s, 9 H, 3 CH,);G,(CDCl,) 195.1 (C), 178.7(C)、166.8 (C)、150.9(C)、131.6 (C)、101.5 (CH)、93.5 (CH)、47.4 (CH)、47.3 (C)、33.3 (CH)、28.1 (CH)、20.0 (CH)、18.2 (CH)、15.4 (CH,) 和 -1.4 (CH,);J.CHEM. SOC. PERKIN 译.I 1995 v,,,(胶片)/cm 2949、1660、1603、1506、1438、1416、1346、1249、1217、1148、1100、1039、1007、948、859、836和758;m/z (EI) 409, 366, 336, 308, 231, 117, 73, 57 和 43 [发现 (HRMS): M', 409.1743.Calc. for C,oH,,NO,SSi: M', 409.17431.致谢 感谢美国国立卫生研究院 (GM 32000-08) 对这项研究的慷慨支持。参考文献 1 (u) W. A. Ayer and G. C. Kasitu, Can. J. Chem., 1989,67, 1077;(b) 余晖。W. Shen, J. Han, Y. Chen 和 Y. Zhu, 耀雪学宝, 1982, 17, 795.2 (a) T. Harayama, M. Ohtani, M. Oki and Y. Inubushi, Chem. Pharm. Bull., 1975, 23, 1511;(b) T. Harayama, M. Ohtani, M. Oki and Y. Inubushi, J. Chem. SOC.,Chem. Commun., 1974,827.3 (u)T. Harayama, M. Takatani 和 Y. Inubushi, Chem. Phurm.公牛, 237 1 1980, 28, 2394;(b) T. Harayama, M. Takatani and Y. hubushi, Tetrahedron Lett., 1979,20,4307.4 (a) G. Luedtke, M. Westling and T. Livinghouse, Tetrahedron, 1992, 48, 2209;(b) M. Westling 和 T. Livinghouse, J. Am. Chem. SOC., 1987, 109, 590;(c) M. Westling和T. Livinghouse, Tetrahedron Lett., 1985, 26, 5389。5 M. Westling, R. Smith 和 T. Livinghouse, J. Org. Chem., 1986, 51, 1159.6 C. H. Lee, M. Westling, T. Livinghouse 和 A. C. Williams, J. Am. Chem. SOC.,1992,114,4089.7 (a) Y. Inubushi、H. Ishii 和 T.Harayama, Chem. Pharm. Bull.(东京),1967年,15,250;(b) T. A. Blumenkopf 和 C. H. Heathcock, in The Alkaloids, ed. S. W. Pelletier, John Wiley and Sons, New York, 1985, p. 230.8 H. Ishibashi, T. S. So, T. Sato, K. Kuroda and M. Ikeda, J. Chem. SOC.,Chem. Commun., 1989,762.Puper 5/04398K 收稿日期 1995年7月6日 录用日期 1995年8月8日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号