...
首页> 外文期刊>The Journal of Clinical Investigation: The Official Journal of the American Society for Clinical Investigation >Regulation of calcium channel expression in neonatal myocytes by catecholamines.
【24h】

Regulation of calcium channel expression in neonatal myocytes by catecholamines.

机译:Regulation of calcium channel expression in neonatal myocytes by catecholamines.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Expression of the dihydropyridine (DHP) receptor (alpha 1 subunit of L-type calcium channel) in heart is regulated by differentiation and innervation and is altered in congestive heart failure. We examined the transmembrane signaling pathways by which norepinephrine regulates DHP receptor expression in cultured neonatal rat ventricular myocytes. Using a 1.3-kb rat cardiac DHP receptor probe, and Northern analysis quantified by laser densitometry, we found that norepinephrine exposure produced a 2.2-fold increase in DHP receptor mRNA levels at 2 h followed by a decline to 50 of control at 4-48 h (P < 0.02). The alpha-adrenergic agonist phenylephrine and a phorbol ester produced a decline in mRNA levels (8-48 h). The beta-adrenergic agonist isoproterenol and 8-bromo-cAMP produced a transient increase in mRNA levels. After 24 h of exposure to isoproterenol, 3H-(+)PN200-110 binding sites increased from 410 +/- 8 to 539 +/- 39 fmol/mg (P < 0.05). The number of functional calcium channels, estimated by whole-cell voltage clamp experiments, was also increased after 24 h of exposure to isoproterenol. Peak current density (recordings performed in absence of isoproterenol) increased from -10.8 +/- 0.8 (n = 23) to -13.9 +/- 1.0 pA/pF (n = 27) (P < 0.01). Other characteristics of the calcium current (voltage for peak current, activation, and inactivation) were unchanged. Exposure for 48 h to phenylephrine produced a significant decline in peak current density (P < 0.01). We conclude that beta -adrenergic transmembrane signaling increases DHP receptor mRNA and number of functional calcium channels and that alpha - adrenergic transmembrane signaling produces a reciprocal effect. Regulation of cardiac calcium channel expression by adrenergic pathways may have physiological and pathophysiological importance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号