...
首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Microbiological hydroxylation of 17-norkauran-16-one andent-17-norkauran-16-one with the fungusRhizopus nigricans
【24h】

Microbiological hydroxylation of 17-norkauran-16-one andent-17-norkauran-16-one with the fungusRhizopus nigricans

机译:17-去甲熊-16-酮和17-去甲熊-16-酮与黑根霉的微生物羟基化

获取原文

摘要

1202 J.C.S. Perkin IMicrobiological Hydroxylation of 17-Norkauran-I 6-one and enf-I 7-Nor-kauran-I 6-one with the Fungus Rhizopus nigricansBy Robert McCrindle and James K. Turnbull, Department of Chemistry, University of Guelph, Guelph,Ontario, CanadaAllan B. Anderson, Department of Botany and Genetics, University of Guelph, Guelph, Ontario, CanadaIncubation of 17-norkauran-16-one (1 b) and ent-17-norkauran-16-one (2b) with Rhizopus nigricans gavemixtures of mono- and di-hydroxy-derivatives (8a-d) and (5a-d), respectively. A modification of an earlierrepresentation of the relevant enzymic sites i s used to explain the patterns of hydroxylation observed.IN attempts to prepare oxygenated derivatives ofkaurene (la), ent-kaurene (2a), and phyllocladene (3a),we have incubated the derived 17-nor-l6-ketones,(lb)-(3b), with various fungal species.Transform-ations were observed with several of these, althoughonly in the case of AsPergiZZus niger was there con-vincing t.1.c. evidence for the production of derivativesfrom all three ketones.to these products. Two other organisms appearedpromising: Calonectria decora, converting (2b) into amore polar compound; and Rhizopus nigricans, pro-ducing several polar derivatives from both (lb) and(2b). Unfortunately, the product from C. decora issimply the related endo-alcohol (4) which was formed in22 yield during 5 days of incubation. However, theStructures have been assignedA. B. Anderson, R. McCrindle, and J. K. Turnbull, Canad.R. A. Appleton, P.A. Gunn, and R. McCrindle, J. Chem.J. Chem., in the press.SOC. (C), 1970, 1148.products from R. nigyicans are of the type sought andwe now describe the assignment of their structures anddiscuss the mode of their formation.Incubation of ent-17-Norkaurnn-16-one (2b) .-Theketone (2b) was added in dimethylformamide (DMF)to a submerged culture of R. nigricans which had beengrowing for 4 days in a full nutrient medium3 underaerobic conditions. After 5 days the mycelium wasfiltered off and the filtrate extracted with ethyl acetate.T.1.c. comparison of this extract with that of a controlculture, to which only DMF had been added, showedthe presence in the former of appreciable quantities offour transformation products in addition to substrate(2b).Extraction of the ground mycelium yieldedsubstrate but no transformationProducts. The extractfrom the filtrate when chromatographed over silica gelgave (2b) and then, in later fractions, the four trans-J. C. Galbraith and J. E. Smith, Brit. Mycol. SOC. Trans.,1969, 52, 2371975 1203formation products.of increasing chromatographic polarity on silica gel.These will be discussed in order(1) a ; R = CH2b; R = O( 2 ) a; R = CH2b ; R = O flR H( 3 ) a;R=CH2b; R =OHO '-(5) a; R'=R2=R3=H (6) a ; R'=R2=Acb; R2=OH,R'= $:Hd; R'=OH,R2=R3=Hb; R'=H,R2= ACC; R3=OH,R'=R2=H C; R'=AC,R~=HAcO-' HO(7) (8) a; R' =R2 = R 3 =H6; R2=OH,R1=R3=Hc; R' = OH,R2= R3=Hd; R3=OH,R'=R2=H19) (10)The least polar product (5a) (2 based on substratenot recovered) was readily identified by direct com-t An Australian group are also studying the hydroxylation oftetracyclic diterpenoids by fungi.We thank Professor P. R.Jeff eries for discussions of unpublished results.parison with the known4 keto-alcohol which we hadobtained earlier from incubation of (2b) with A . niger.The major transformation product (5b) (15 yield)was eluted next together with a small proportion of thethird product (5c). The former was purified by pre-parative t.1.c. and formulated as a keto-diol on thebasis of its t.1.c. polarity and i.r. and mass spectra.Evidence for the location of the hydroxy-groups camefrom its lH n.m.r. spectrum. Two broad multiplets(each 1H) represent the X parts of two ABX systemsand can be ascribed to two axial carbinol protons eachof which has only two neighbouring protons in a vicinalrelationship.Thus the hydroxy-groups are equatorialand situated at C-1, C-3, or C-7. Further, the positionand multiplicity of the upfield carbinol proton resonanceand the chemical shift pattern of the three singletsarising from the tertiary methyl groups are almostidentical with those of (5a). This suggests the presenceof an equatorial hydroxy-group at C-3 and that theother substituent is positioned in such a way that itdoes not affect the chemical shifts of the methyl groups.Therefore, the possibility of a C-1 substituent can bediscarded and the second hydroxy-group assigned toC-7. Confirmatory evidence for this comes from thelocation (7 7.32) of the resonance attributed to H-15a,the 7a-hydroxy-group inducing a pronounced down-field shift from its normal value cJ z 7.85 for (2b)l.Indeed, when the IH n.m.r.spectrum of (5b) was run inpyridine this doublet was further shifted downfield by0.37 p.p.m. Incubation of (5a) with Rlzixopus nigricans tgives a compound to which structure (5b) has beenassigned.' Direct comparison of these samples con-firmed that they were identical.The next component (5c) was eluted from the columnin fractions which in addition contained either themajor product (5b) or the most polar product (5d).Preparative t.1.c. furnished (5c) (7 yield), which hasmany spectral features in common with (5b). Thustheir mass and i.r. spectra are very similar, as are thechemical shift patterns of the resonances attributableto the three tertiary methyl groups. In addition, the1H n.m.r.spectrum of (5c) contains a multiplet whichin shift position and shape is almost identical with thatascribed to the axial carbinol proton at C-3 in (5b). Aresonance at slightly lower field is attributable to anequatorial carbinol proton. This evidence was takento imply that (5c) is an isomer of (5b), an axial hydroxy-group in the former being present in lieu of the 7a-hydroxy-group in the latter. The spectral propertiesof the di- and mono-acetates (6a-c) derived from(5c) supported this conclusion and allowed assignmentP. R. Jefferies and R. W. Retallack, Austral. J . Chem., 1968,21, 1311; D.A. H. Taylor, J . Chem. SOC. (C), 1967, 1360.6 L. M. Jackmann and S. Sternhell, 'Applications of NuclearMagnetic Resonance Spectroscopy in Organic Chemistry,'Pergamon, Oxford, 1969, p. 237.Cf. B. P. Hatton, C. C. Howard, and R. A. W. Johnstone,J . C . S . Chem. Comm., 1973, 744.J. P. Beilby, E. L. Ghisalberti, P. R. Jefferies, M. A. Sefton,and P. N. Sheppard, Tetruhedvon Letters, 1973,2689.8 P. R. Jefferies, personal communication1204 J.C.S. Perkin Iof the axial hydroxy-group to C-7. The shifts inducedby Eu(dpm), on the methyl resonances in the lH n.m.r.spectra of the two monoacetates (6b) and (6c) wereparticularly valuable. For the less polar monoacetate(6b) the induced shifts were in a normalised ratioDwhich is entirely consistent l p D with the presence of anequatorial hydroxy-group at C-3.In the case of themore polar monoacetate (6c) the shifts induced in theresonances of the two C-4 methyl groups were similarin magnitude whereas those of the C-10 and acetylmethyl groups were larger and smaller, respectively.Only a hydroxy-group at C-7 could provide a reasonableexplanation for these observations. Since the alter-native 3-ax,7-eq-diol formulation for (512) is irreconcilablewith the spectral data, inter-relation of (5b) and (5c)by oxidation of both to the corresponding trione wouldestablish the structure of (5c) firmly. This has beenaccomplished for the enantiomeric diols (8b and c) (seebelow).That the most polar transformation product is alsoa keto-diol (5d) (7 yield) was apparent from itsspectral characteristics.However, the ill-defined natureof its carbinol proton resonances precluded their use indetermining the location of the hydroxy-groups. ThelH n.m.r. spectrum of the diacetate (7) was moreinformative. In this the analogous resonances wereattributable to the X parts of ABX systems, the observedmultiplicities indicating that both carbinol protons areaxial and each is coupled to two vicinal protons, oneaxial and one equatorial. Thus the hydroxy-functionsin (5d) are equatorial and at C-1, C-3, or C-7. Since thisfinal transformation product is not identical with (5b) itmust be either the l-eq,3-eq- or the l-eq,'l-eq-diol. That itis the former was shown by comparison with data for asample of (5d) prepared by Jefferies and his co-workers.Incubation of 17-Norkauran-16-one (lb) .-T.1.c.trans-formation products obtained similarly from (lb) sug-gested that appreciable quantities of four diterpenoidswere present in the mixture and that three of them,(Sa-c), were enantiomeric with products from (2b)while the fourth contained a new substitution pattern.All four were isolated by chromatography, the first(l), third (21), and fourth (8) (order of increasingchromatographic polarity) being identified as @a),(8b), and (8c), respectively by comparison of theirphysical and spectral characteristics with those of theirenantiomers (Sa--c). In addition, (8b) and (8c) werecorrelated by oxidation of both to the trione (9).The other component, second in polarity, was theketo-diol (8d) (15).Its i.r., mass, and lH n.m.r.spectra pointed strongly to its formulation as a keto-D. G. Buckley, G. H. Green, E. Ritchie, and W. C. Taylor,Chem. and Ind., 1971, 298.M. Hayano, M. Gut, R. I. Dorfman, 0. K. Sebek, and D. H.Peterson, J. Amev. Chcm. Soc., 1968,80, 2336; E. J. Corey, G. A.Gregoriou, and D. H. Peterson, ibid., p. 2338.(a) J. W. Browne, W. A. Denny, Sir E. R. H. Jones, G. D.Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S.Perkin I, 1973, 1493; (b) V. E. M. Chambers, W. A. Denny,J. M. Evans, Sir E. R. H. Jones, A. Kasal, G. D. Meakins, and J.Pragnell, ibid., p. 1500.l1 G. Ferguson and W. C. Marsh, unpublished result.diol, with one hydroxy-group secondary (equatorial)and the other tertiary.The tertiary nature of one ofthese groups was confirmed by acetylation, only amonoacetate (10) being formed even under forcingconditions. The lH n.m.r. spectrum of (10) was runin the presence of Eu(dpm), in the hope that it mightindicate the location of the tertiary hydroxy-group.However, the addition of the shift reagent, even insubstantial quantities, did not induce shifts largeenough to be of any diagnostic value, presumablybecause the hydroxy-group is too hindered to complexsignificantly with the reagent. Although no inform-ation had been acquired about the location of thetertiary substituent, the Eu(dpm),-induced shifts in thelH n.m.r. spectrum of the parent diol (8d) could now beexamined in the knowledge that only complexing withthe secondary alcohol would be important in deter-mining their magnitude.Indeed, the normalised ratioof the shifts induced in the methyl resonances agreesclosely with that expected l v 9 for an equatorial hydroxy-group at C-3. The lH n.m.r. spectra of (8d) and (10)allowed assignment of the other hydroxy-group to C-9a.In both, the resonance of H-15a appears far downfield(about 0.8 p.p.m.) from its position in related compoundswhich lack oxygenation at C-7 and C-9. The resonanceis easily assigned on the basis of its multiplicity. Innorkauran-16-ones this proton shows a large geminalcoupling, since it is adjacent to a carbonyl group, andin addition a long-range coupling to H-14P. Thus thetertiary hydroxy-group must be at C-9 and have thea-orientation expected on mechanistic grounds, ahydroxy-group normally having lo the same orientationas the hydrogen atom which suffers microbial displace-ment.Thus the diol can be formulated as (€id), anassignment which has been substantiated l1 by anX-ray structural analysis of (IO), by direct methods.Mechanism.-The outcome of the microbial oxidationreported here for (lb) and (2b) can be readily rationalisedon the basis of an extension of a mechanism proposed l 2 ~ 3by Jones, Meakins, and their co-workers for the hydroxyl-ation of steroidal substrates by R. nigricans. Theynoted that certain steroidal ketones are dihydroxylatedand considered12 that both hydroxy-groups may beintroduced in a concerted manner by a single enzyme-substrate complex.They suggested that the simplestexplanation would involve an enzyme which has threeactive sites, each with binding and hydroxylatingcapabilities, located in a triangular arrangement, corre-sponding to C-3, C-11, and C-16 of the steroid nucleus see(lla). This predicts the location of hydroxylation inmany, but not all, cases although it fails to explain theorientation (a or p).If one refines Jones' representation in a three dimen-sional sense, practically all the relevant results 12-16 in13 Sir E. R. H. Jones, Pure Appl. Chem., 1973, a, 39.14 A. M. Bell, V. E. M. Chambers, Sir E. R. H. Jones, G. D.Meakins, W. E. Muller, and J. Pragnell, J.C.S.Perkin I, 1974,312.16 2. Prochazka, Abh. Deut. Akad.Wiss. Berlin, Kl. Med., 1968,no. 2, 131.16 W. Charney and H. L. Herzog, ' Microbial Transformationsof Steroids,' Academic Press, New York. 19671975 1205the steroid field and those reported here are explained.The only refinement necessary is to define a referenceH( l l a ) (12)norml (n)mode(Ilbl Act; Bcc or cop1anar;CPn(13) reversed ( r ) mode (14) capsized normal(cnl mode(15) capsized reversed(cr 1 modeplane as that of the steroidal ring system of a substrateand to require that relative to this plane site A is below,site B is below (or coplanar), and site C is above ( l l b ) .The four most obvious binding modes 12*13 for a steroidare drawn (12)-(15). When one analyses the resultsfrom the steroid field it appears that the uncapsizedmodes, (12) and (13), are generally preferred for binding.In binding, site A favours oxygen atoms below theplane and hydroxylates from below (a); site B hassimilar binding requirements but can hydroxylate a(axial or equatorial) or p (equatorial only); site Cprefers to bind oxygen functions above the plane andhydroxylates p.Thus in the case of 5a-androstane-derived substrates 12aa 3-ketone interacts (16) with site A (n mode) and aP-hydroxy-group is inserted at C-16 (site C) and ana-hydroxy-group at C-11 (site B).On the other hand,a 2-ketone interacts (17) with site C (Y mode) anda-hydroxy-groups are inserted at C-16 (site A) and a tC-6 (site B). With appropriately disubstituted sub-strates,12* interactions with the binding sites will beoptimised.Thus the 17P-hydroxy-3-ketone (18) suffersn mode; p-01 at site C, C(3)=0 a t site A mainly C-11hydroxylation while its 3p-OH,C(17)=0 isomer (19) ishydroxylated Y mode; p-01 a t site C, C(17)=0 at site Aat C-7. In cases where the functionality is so disposedthat binding through two sites simultaneously is notpossible, then only one will be utilised, the resultingcompetition among different available modes of bindinggiving rise to mixtures 126 of products. Difficultieswere experienced in accounting for some of the minorproducts. Thus the hydroxylation of C-17 derivativesat the 5a- and 6cc-positions is not readily rationalisedby the model presented here unless one assumes thatan adsorptive mode such as (20) * is involved cf.the site A-site C distance in (21) and (22), hydroxyl-ation proceeding at site A.Further, it seems likelythat during insertion of the first hydroxy-group intoring B or ring c steroidal monoketones, modes of inter-action other than (12)-(15) are involved in whichthe ketone complexes with either site A or site C ratherthan the expected site B. Two final points should benoted. First, in mono-oxygenated substrates the twoHO-’ ,w(18)(20)0 (19)0(211(23)(241hydroxy-groups may be introduced by a sequential,rather than a simultaneous, process and second, themodel of the binding-hydroxylating sites outlined above* Such a mode would also explain the considerable amount oflla-hydroxylation,12a at the expense of the more usual C-3hydroxylation, in 6a-hydroxy-5a-androstan-17-one, the 6a-hydroxy-group being suitably oriented for interaction with siteA C(17)=0 at site C and hydroxylation at site B1206 J.C.S.Perkin Imay represent the sum of the locations and propertiesof the active sites on two or more enzyme units.Based on this general mechanism the followingenzyme-substrate complexes * would explain the pro-duction of (8a-d) from (lb) and (5a-d) from (2b).Interaction (21) (Y mode; ring c boat?) of the ketone of(lb) with site A would result in insertion of a p-OH atC-3 by the participation of the suitably disposedhydroxylation site C. This accounts for the formationof (8a). The two functional groups in (8a) then causebinding (21) (Y mode) at the same, or a new, activeregion and allow hydroxylation (site B) to proceed atthe 7p- (equatorial) or 7a-position as observed withsteroids. However, with this substrate, a molecularmodel indicates that more efficient interaction of theC(16)=0 with site A could be achieved by starting withthis Y mode, (21) (ring c chair), and rotating it ca.45"around the C-3,C-16 axis in such a way that H-9 rotatesdownwards and back toward hydroxylation site B.Thus formation of the three products (8b-d) isexplained.In formation of the substrate-enzyme complex with(2b) two possible niodes of interaction, Y mode (22)(ring c boat?) and cn mode (23) (ring c chair) presentthemselves, both of which predict formation of (5a) andby further attack (5d). Hydroxylation a t C-7 in theformation of (5b and c) requires absorption of thesubstrate in a tilted CY mode (24), an interaction whichappears acceptable on the basis of the active siterepresentation outlined above when one compares (24)with (19) using space-filling molecular models.EXPERIMENTALFor general experimental directions see ref.1. Molecularrotations were measured for solutions in methanol, unlessotherwise stated. Coupling constants reported are observedvalues.Incubation of ent- 17-iiorkauran- 16-one with Calonectriadecora.-Cultures (2 x 2-25 1) of C . decora were grown inMedium B l7 lacking beef extract (but containing allessential nutrients) for 5 days.(2b) (707 mg) in DMF (50 ml) was added and the ferment-ation was stirred vigorously for 7 days.The myceliumwas filtered off and the filtrate extracted with ethyl acetate(2 x 1.2 1 per 1.5 1 of filtrate) after the addition of sodiumchloride (500 g). Evaporation of the combined ethylacetate fractions gave an oil (1.4 g) which was chromato-graphed on silica gel (60 g). A control culture (2.5 l),containing DMF (25 ml) alone, was treated similarly.Elution with ether-light petroleum (1 : 4) gave first thestarting ketone (2b) and in later fractions ent- 17-norkauran-16a-01 (4) (27 mg, 22y0), m.p. 160-162' (from methanol-water) (lit.,2 162-163') ; vOH 3630 cm-l; T 9.17, 9.14, and8.95 (all s, quaternary CMe) and 5-70 (lH, m, W+ 30 Hz,H-16). Elution with more polar solvents, including ethylacetate-methanol mixtures, gave only compounds whichwere shown to be present in the control extract by analyticalt.1.c. and n.m.r.The mycelium was extracted with ethyl acetate and the* A referee has suggested that in some of these (see text) inter-action of the substrate with the enzyme sites could be optimised ifring c were to adopt a boat conformation.ent-17-Norkauran- 16-oneresulting extract chromatographed on silica gel (30 g) togive the starting ketone (2b).All fractions containing (2b)were combined (total 584 mg).Incubation of ent- 17-Norkauran-16-one with Rhizopusnigricans.-After 4 days of growth, cultures (4 x 2.5 1) ofRhizopus nigricans in a full nutrient medium3 were in-oculated with ent-17-norkauran- 16-one (2b) (2.0 g total) inDMF (50 ml). The fermentation was continued for 5 daysand then the mycelium was filtered off.After addition ofsodium chloride (1 kg) the filtrate was extracted with ethylacetate (2 x 1.5 1 per 2.5 1 of filtrate). Evaporation of theextracts gave an oil (8.3 g) which was chromatographedover silica gel (300 g). .4 control fermentation (2.5 1)containing DMF (7 ml) was treated in the same way.Elution of the column with ether-light petroleum (1 : 4 and1 : 1) gave fractions that contained the starting nor-ketone(2b) (600 mg), along with non-diterpenoid compounds.Later fractions contained the following transformationproducts.ent-3~-Hydroxy-l'i-norlzauran- 16-one (5a) .-Elution withpure ether gave a fraction (150 mg) containing a compoundnot present in the control extract.The major componentof this fraction, a non-terpenoid fungal metabolite, wasremoved by distillation under vacuum at 50" t o leave asolid (75 mg) which was subjected to careful preparativet.1.c. (pure chloroform, then ethyl acetate-light petroleum,1 : 3). The resulting keto-alcohol (5a) (17 mg, 1.7y0), oncrystallisation from methanol-water and then lightpetroleum had m.p. 179-183' (lit.,l 179-181') ; mixedm.p. 180-183".ent-3p, 7p-Dihydroxy- 17-norkauran- 16-one (5b) .-Elutionof the column with pure ether gave, in later fractions, awhite solid (175 mg) which showed one major and oneminor component on t.l.c., both of which were not presentin the control extract. Preparative t.1.c. (methanol-ethylacetate, 1 : 19) separated these compounds to give theketo-diol (5b) and a small amount of the keto-diol (5c) (seebelow).The keto-diol (5b) (175 mg, 15) on crystallis-ation from methanol-water had m.p. 219-221' (reported,s223-224'); a, -32'; vOH 3630, vco 1740 cm-l; T (CDCl,)9-20, 8.99, and 8.89 (all s, quaternary CMe), 7-32 lH, dd,H-l5a(exo), JSm 18, J15a,13 2 Hz, and 6-22-6-90 (2H,complex m, H-3 and -7); T (pyridine) 9.00, 8.92, and8.83 (all s, quaternary CMe), 6-95 (lH, dd, H-l5a), and6-3-6-8 (2H, complex m, H-3 and -7) ; m/e 306 (goyo, Mf),291 lo, (M - 15)+, 288 25, (M - 18)+, 273 (30), and121 (100); mixed m.p.8 221-223".ent-3@,7a-Dihydroxy- 17-norkauran- 16-one (5c) .-Theinitial fractions eluted with ether-ethyl acetate (1 : 1)contained (52). This was separated from the majorcontaminant (5b) by preparative t.1.c.(methanol-ethylacetate, 1 : 19). On crystallisation from methanol-waterand then ether, the keto-diol (5c) (75 mg, 7) had m.p.208-210", a, - 8 O ; vOH 3620, vco 1747 cm-1; T (CDCl,)9.20, 9.01, and 8.90 (all s, quaternary CMe), 7.85 (d, part ofH-15a signal, J15a,13 1-5 Hz), 6-70 (lH, m, H-3, Wt 17 Hz),6-30 (lH, m, H-7, W, 8 Hz); T (pyridine) 8.94, 8.92, and8-74 (all s, quaternary CMe), 7-55 (d, downfield part ofH-16a signal), 6.48 (lH, m, H-3), and 6-10 (lH, m, H-7);m/e 306 (lo, M+), 291 5, ( M - 15)+, 288 15, ( M - IS)+,274 (13), 255 ( l l ) , and 121 (100) (Found: C, '74.2; H, 9.8.CI,H~,,O~ requires C, 74.45; H, 9.85).ent-l~,3~-Dihydroxy-17-norkauran-16-one (5d) .-Later17 J.W. Blunt, I. M. Clark, J. M. Evans, Sir E. R. H. Jones,G. D. Meakins, and J. T. Pinhey, J . Chew. SOC. ( C ) , 1971, 11361975 1207fractions eluted with ether-ethyl acetate (1 : 1) containedthe keto-diol (5d) along with some (5c). These wereseparated by preparative t.1.c. (methanol-ethyl acetate,1 : 19). On crystallisation from methanol-water the keto-diol (5d) (70 mg, 7) had n1.p. 246-251' (reported,8246246"); a, -37'; VOH 3630 cm-l; T (CDCl,) 9-22,9.05, and 8.84 (all s, quaternary CMe), 64-6.9 (2H,complex m, H-1 and -3); 7 (pyridine) 8-99, 8-85, and 8.67(all s, quaternary CMe), 6-4-6.8 (ZH, complex ni, H-1and -3); nt/e 306 (17, M+), 288 r31, (M - lS)-', 273(22), 270 (39), 255 (44), 234 (70), 233 (loo), 232 (90): 191(70), 177 (63), 174 (60), and 163 (47).Extraction of the mycelium with ethyl acetate gave anoil (1.2 g) which was combined with the impure (2b)previously isolated.Chromatography over silica gel andelution with ether-light petroleum (1 : 8) gave the startingketone (2b) (965 mg).A cetylation of the Keto-diol (5c) .-The keto-diol (5c)(65 mg) was treated with acetic anhydride ( 1 ml) andpyridine (4 ml) for 1 h at 0 "C. Methanol (2 ml) was thenadded and the solvent evaporated off under vacuum togive an oil, which was subjected to preparative t.1.c.(chloroform). The top band, consisting of diacetate, andthe middle band, two monoacetates, were retained, and thelarge quantity of starting material in the bottom band waseluted and acetylated as before.After four of these cyclesand a fifth cycle of 2 11 reaction time, the products wereisolated by preparative t.1.c.The least polar band contained ent-3pJ7a-dincetoxy- 17-norkauran-l6-one (6a) ( 18 mg), which on crystallisationfrom ether-light petroleum and then ether had m.p.176-177"; a, -6'; vco 1740 cm-l; T 9.23, 9-15, and8.88 (all s, quaternary CMe), 7.97 (6H, s, 2 x OAc), 5.47(lH, m, H-3, W* 17 Hz), and 5-10 (IH, m, H-7, W+ 8 Hz){Found : I+, 390.2410. C2.H3@5 requires M , 390.2406).The band of intermediate polarity gave a solid (35 mg)consisting of two compounds which were separated bypreparative t.1.c. (ethanol-chloroform 1 : 100, run threetimes). The less polar was ent-Sa-acetoxy-3P-hydroxy- 17-norkauran- 1 6-one (6b) ( 13 mg), which on crystallisationfrom ether had m.p.216-217"; V ~ H 3620, vco 1738 cm-l;T 9.18 (s, 19-H,), 9-07 (s, 18-H,), 8-87 (s, 2O-H,), 7.93 (s,OAc), 6.71 (IH, m, H-3, Wi 17 Hz), and 5.07 (lH, m,H-7, Wt 8 Hz) (Found: M+, 348-2303. C,1H3204 requiresM , 348.2301). In the presence of Eu(dpm), (28 mg),(6b) (10 mg) has T 6-50 (s, OAc), 4.25 (s, 2O-H,), -0-70 (s,18-H,), and -1.25 (s, 19-H,). The induced shifts are inthe ratio, 19-H, : IS-H, : 20-H, : OAc, of 10 : 9.4 : 4.4 : 1.4.The more polar ent-3~-acetoxy-7a-hydroxy-17-norkaztran-16-one (6c) (15 mg), on crystallisation from ether, had m.p.303-205"; v o ~ 3620, vco 1740 cm-l; T 9.12 (s, 19- andI8-H3), 8-87 (s, 2O-H,), 7.95 (s, OAc), 6.27 (lH, m, H-7,Wg 8 Hz), and 5.45 (lH, m, H-3, Wt 17 Hz) (Found: M+,348-2303.C,1H,,O4 requires M , 348.2301). In theprcsence of Eu(dpm), (27 mg), (6c) (15 mg) has T 7.20 and7.07 (both s, quaternary 4-Me2), 6-30 (OAc), and 5.88 (s,2O-H,). The induced shifts are in the ratio 20-H, : 4-Me : 4-Me : OAc, of 10 : 6.9 : 6.5 : 5.6.The most polar band of the original t.1.c. plates consistedof the starting keto-diol (5c) (5 mg).A cetylation of the Keto-diol (5d) .-The keto-diol (5d)(60 mg) was treated with acetic anhydride-pyridine (1 : 1 ;5 ml) overnight. Removal of solvent and then preparativet.1.c. (ethyl acetate-light petroleum, 1 : 2) gave ent-lp,3P-dincetoxy- 17-novkauran- 16-one (7) (70 mg), m.p. 202-204"(from ether); vco 1740s cn1-l; 7 9.12 (s, 19- and 18-H3),8.67 (s, 20-H,), 8.00 and 7-97 (both s, 2 x OAc), and 5-32and 5.21 (both m, H-1 and -3, LVt 16 Hz) (Found: M',390-2410.C2,H,,05 requires 144, 390.2406).Incubation of 17-Norkauran- 16-one ( 1 b) with Rhizopusnigricans.-A culture (2 x 2-5 1) of R. nigrzcans in theusual medium was grown for 3 days and then inoculatedwith 17-norkauran-16-one (lb) (843 mg) in DMF (20 ml).The fermentation was continued with vigorous aerationfor 5 days. The mycelium was then filtered off and afterthe addition of sodium chloride (500 g) the filtrate wasextracted with ethyl acetate (2 x 1.5 1 per 2-5 1). Theextracts were combined and the solvent removed to give anoil. A control culture (2.5 1) containing DMF (10 ml) onlywas treated similarly. The extracts were compared byt.1.c. which showed the presence of a t least four additionalcompounds in the fermentation extract.The fermentation extract (2.7 g) was chromatographedover silica gel (70 g).Elution with ether-light petroleum(1 : 4) gave in early fractions the starting ketone (Ib)contaminated with fungal metabolites. Later fractions ofthis eluent gave an oil (100 mg) which contained a furthercompound not present in the control.3~-Hydroxy-17-norkauran-16-one (8a) .-Preparative t.1.c.(chloroform, run twice), separated the keto-alcohol (8a)(10 mg, 1.3) from this oil. On crystallisation frommethanol-water the keto-alcohol had m.p. 181- 183" ;4, +33O {cf. enantiomer (5a), m.p. 180-183'; a, -45");vOH 3620, vco 1740 cm-l; n.m.r. and mass spectra as (5a)(Found : I+, 290-2247. Cl,H3,O2 requires N , 290-2246).Elution with pure ether gave a solid consisting of fourcomponents, three of which were not present in the controlextract. These were separated by repeated preparativet.1.c.(light petroleum-ethyl acetate, 1 : 3) to give fourbands. The top band gave a fungal metabolite (30 mg)which was also present in the control extract.3p, 9a-Dihydroxy-17-norkauvan- 16-one (8d) .-Band twooverlapped partially with band three b u t the top portiongave pure keto-diol (8d). The bottom portion was re-chromatographed. The keto-did (8d) (130 mg, 15) fromall fractions was combined and on crystallisation fromfirst ether-methanol and then methanol-water had m.p.224-226'; a $17"; VOH 3618, vco 1742 cm-1; T (CDC1,)9.17 (s, 19-H,), 8.98 (s, l8-H,), 8.87 (s, 20-H,), 7.24 (lH, dd,H-15a, Jsem 19, J15a,14@ 2.5 Hz), and 6.80 (IH, ni, H-3,15'4 16 Hz); T (pyridine) 8.91 and 8.75 (6H) (both s,quaternary CMe), 7.52 (lH, dd, H-14P, Jge,, 13, J14~.~5a2.5 Hz), and 6.80 (lH, dd, H-15a); m/e 306 (27, M+),288 loo, (M - IS)+, 270 30, (N - 36)+, 255 (25), 245(60), 227 (67), 165 (33), and 123 (100) (Found: C, 74.3;H, 10.0.C13@3 requires C, 74.45; H, 9.85). In thepresence of Eu(dpm), (28 mg), (8d) (30 mg) had z 7.40 (s,20-H,), 6-00 (s, 18-H,), and 5-89 (s, 19-H,). The inducedshifts are in the ratio 10 : 9.1 : 4.2 for 19-H, : IS-H, : 20-H,.3/3,7~-Dilzyd~oxy-l7-norkauran-l6-one (8b).-The bottomportion of band three gave pure keto-diol (Sb). The topportion, which contained (8d) as well, was rechromato-graphed.The keto-diol (8b) (180 mg, 21y0), on crystallis-ation from methanol-water and then methanol, had m .p.225-226"; a,, +34.5' {cf. enantiomer (5b), m.p. 219-221, 223-224", oilD -32'); v o ~ 3630, vco 1740 cm-l;T (pyridine) 9.00, 8-92, and 8-83 (all s, quaternary CMe),6-95 (lH, dd, H-15@, Jse, 18, J158.13 1.5 Hz), and 6-3-48(2H, complex m, H-3 and -7); nz/e 306 (SO, Mt), 291lo, (ill - 15)+, 288 25, (-42 - 18)+j, 273 (35), and 121208 J.C.S. Perkin I(100) (Found: C, 74.25; H, 9-95. C,,HsoOs requires C,74.45; H, 9.85).3p, 7a-Dihydroxy- 17-norkauran- 18-one (8c) .-Band fourcontained a small amount of impure material that showedthe same chromatographic behaviour as the keto-diol (5c).Elution of the chromatography column with ether-ethylacetate (1 : 1) gave more of this material.This fractionwas combined with band four and subjected to preparativet.1.c. (light petroleum+thyl acetate, 1 : 3) to give an oil(100 mg) which was homogeneous by t.1.c. Vacuumsublimation of this separated a fungal metabolite from lessvolatile diterpenoids (80 mg). Preparative t.1.c. (methanol-chloroform, 1 : 19) of the latter gave a glass which couldnot be induced to crystallise. This material, consistingmainly (ca. 85) of the keto-diol (€412) together with otherditerpenoids (ca. 16), had VOH 3620, vco 1747 cm-1;T (CDCl,) 9-20, 9-01, and 8.90 (all s, quaternary CMe), 7.85(d, part of H-15P signal, J158.13 1.5 Hz), 6-70 (lH, m, H-3,W+ 17 Hz), and 6.30 (lH, m, H-7, W+ 8 Hz) attributable to(8c), and T 8.75 and 8.70 due to impurities cf.n.m.r. of(SC) . This impure diol (23 mg)was treated with acetic anhydride-pyridine (1 : 1.5 ml)overnight. Removal of the solvent followed by preparativet.1.c. (ethyl acetate-light petroleum, 1 : 2, run twice) gavethe 3p,'Ia-diacetate (25 mg), which on crystallisation fromether-light petroleum (twice) had m.p. 176-176'; a,+7' (CHCl,) {cf. enantiomer (6c), m.p. 175-177'; a,-6'); i.r., n.m.r., and mass spectra identical with thoseof (6c) (Found: M+, 390.2410. C,,H,,05 requires M,390.2406).The mycelium was dried and extracted with ether togive an oil (1.3 g) which was combined with the impurestarting material obtained from the filtrate (above).Thismaterial was then chromatographed over silica gel (50 g).Elution with ether-light petroleum (1 : 4), followed bypreparative t.1.c. (ethyl acetate-light petroleum, 1 : 12),gave the starting norketone (lb) (72 mg) .A cetyhtion of the Keto-diol (8d) .-The keto-diol (8d)The yield of (8c) was 8.(46 mg) was treated with acetic anhydride-pyridine ( 5 ml;1 : 1) for 3 h. Evaporation of solvent followed by pre-parative t.1.c. (methanol-chloroform, 1 : 30) gave 3p-a.cetoxy-9~-hydroxy-l7-norkauvan-16-one (10) (41 mg), m.p.291-295' (from methanol) ; a, + 17.5O (CHCI,); VOH3620, vco 1737 cm-l; T 9.11 (s, 19- and l8-H,), 8.75 (s,20-HJ, 7.80 (s, OAC), 7.48 (lH, dd, H-l4P, Jsem 13, J1,fi,lso!2.5 Hz), 7.20 (IH, dd, H-15a, Jm 19, J 1 5 a r , l ~ 2.5 Hz),330 3, (M - IS)', 289 (62), 288 loo, (M - 60)+, 270and 5.50 (lH, m, H-3, Wt 17 Hz); m/e 348 (a, M+),(32), 255 (48), 245 (70), 227 (go), and 165 (53) (Found:C, 72.1; H, 9.4.Oxidation of the Keto-diol (8b) .-The keto-diol (8b)(62 mg) in acetone (15 ml) was treated with Jones reagent(0.2 ml) for 15 min. Addition of water followed by ex-traction with ether gave the crude trione. On crystallis-ation from ether 17-norkaurane-3,7,16-trione (9) (46 mg).had m.p. 140-142'; a, +So (CHCl,); vco 1745 and1710 cm-l; 7 8.89 (6H) and 8-63 (both s, quaternary CMe)and 6.88 (lH, dd, H-l5P, Jgm 18, J I 5 f i . 1 3 1.5 Hz); m/e 302(54, M+), 260 (75), 217 (45), 164 (70), and 136 (100)(Found: C, 75.2; H, 8.8. C,,H,BO, requires C, 75.45; H,8.65).Oxidation of the Keto-diol (8c) .-Impure keto-diol (8c)(31 mg) was oxidised with Jones reagent as for (8b). Thecrude product was subjected to preparative t.1.c. (ethylacetate-light petroleum, 2 : 3) to give the trione (9) (19mg), m.p. 140-142' (from ether), identical (n.m.r. andi.r. and mass spectra) with a sample of (9) prepared from(8b) ; mixed m.p. 140-142'.C,,H,,O, requires C, 72.4; H, 9.25).We thank the National Research Council of Canada foran Operating Grant (to R. McC.) and a Scholarship (toJ. K. T.). We are also indebted to Dr. T. Anthonsen,Trondheim, Norway, for the high resolution mass spectraand to Dr. G. L. Barron, University of Guelph, for gifts-offungal cultures.4/2667 Received, 9th December, 1974
机译:1202 J.C.S. Perkin IM17-Norkauran-I 6-one 和 enf-I 7-Nor-kauran-I 6-one 与黑根霉的羟基化作者:Robert McCrindle 和 James K. Turnbull,圭尔夫大学化学系,加拿大安大略省圭尔夫市Allan B. Anderson,圭尔夫大学植物学和遗传学系,加拿大安大略省圭尔夫市[分别为(8a-d)和(5a-d)]。对用于解释观察到的羟基化模式的相关酶位点的早期表示的修改。在尝试制备高山菊烯 (la)、ent-kaurene (2a) 和叶绿榴烯 (3a) 的含氧衍生物时,我们将衍生的 17-nor-l6-酮 (lb)-(3b) 与各种真菌物种一起孵育。其中有几个观察到了转化,尽管只有在AsPergiZZus niger的情况下才有令人信服的t.1.c。从这三种产品 ketones.to 生产衍生物的证据。另外两种生物体也出现了:Calonectria decora,将(2b)转化为一种更强的极性化合物;和 Rhizopus nigricans,从 (lb) 和 (2b) 产生几种极性衍生物。不幸的是,来自 C. decora 的产物只是相关的内醇 (4),在孵育 5 天期间以 22% 的产率形成。但是,结构已被分配A。B. Anderson、R. McCrindle 和 JK Turnbull,Canad.R.一个。Appleton, PA Gunn 和 R. McCrindle, J. Chem.J.Chem., in the press.SOC. (C), 1970, 1148.来自黑鹤的产物属于所寻求的类型,我们现在描述其结构的分配并讨论它们的形成方式。将 ent-17-Norkaurnn-16-酮 (2b) .-Theketone (2b) 在二甲基甲酰胺 (DMF) 中孵育到在全营养培养基 3 缺氧条件下生长 4 天的黑芸芥的浸没培养物中。5天后,滤去菌丝体,用乙酸乙酯提取滤液.T.1.c.将该提取物与仅添加DMF的对照培养物进行比较,显示前者中除了底物(2b)外,还存在大量转化产物。提取磨碎的菌丝体产生基质,但没有转化产品。从滤液中提取的提取物在硅胶凝胶上色谱时得到(2b),然后在后来的馏分中,得到四个反式J。C. Galbraith 和 J. E. Smith, Brit. Mycol. SOC. Trans.,1969, 52, 2371975 1203形成产物,在硅胶上增加色谱极性。这些将按顺序讨论:(1) a ;R = CH2b;R = O( 2 ) a;R = CH2b ;R = O flR H( 3 ) a;R=CH2b;R =OHO '-(5) a;R'=R2=R3=H (6) 一 ;R'=R2=Acb;R2=OH,R'= $:Hd;R'=OH,R2=R3=Hb;R'=H,R2= ACC;R3=OH,R'=R2=H C;R'=AC,R~=HAcO-' HO(7) (8) a;R' =R2 = R 3 =H6;R2=OH,R1=R3=Hc;R' = OH,R2= R3=Hd;R3=OH,R'=R2=H19) (10)极性最小产物(5a)(2%基于未回收的底物)很容易通过直接com-t鉴定 澳大利亚的一个研究小组也在研究真菌对四环二萜类化合物的羟基化。我们感谢 P. R.Jeff eries 教授对未发表的结果的讨论,我们之前从 (2b) 与 A 的孵育中获得的已知 4 酮醇。尼日尔。接下来将主要转化产物(5b)(产率为15%)与第三产物(5c)的一小部分一起洗脱。前者通过制备t.1.c纯化。并根据其 T.1.C 配制成酮二醇。极性、IR 和质谱。羟基位置的证据来自其lH n.m.r.谱。两个广泛的倍数(每个 1H)代表两个 ABX 系统的 X 部分,可以归因于两个轴向甲醇质子,每个质子在邻近关系中只有两个相邻的质子。因此,羟基是赤道的,位于 C-1、C-3 或 C-7。此外,上场甲醇质子共振的位置和多重性以及由叔甲基产生的三个单晶态的化学位移模式与(5a)几乎相同。这表明在C-3处存在赤道羟基,并且另一个取代基的位置不会影响甲基的化学位移。因此,可以丢弃 C-1 取代基的可能性,并将第二个羟基分配给 C-7。对此的证实性证据来自归因于H-15a的共振的位置(7 7.32),7a-羟基诱导了从其正常值的明显下场偏移[cJ z 7.85 for (2b)l.事实上,当(5b)的IH n.m.r.谱被运行吡啶时,这种双峰被进一步向下场移动0.37 p.p.m. (5a)与黑Rlzixopus nigricans一起孵育,得到一种结构(5b)已被分配的化合物。对这些样本的直接比较证实了它们是相同的。下一个组分(5c)从列蛋白馏分中洗脱,此外还含有主要产物(5b)或极性最强的产物(5d)。制备t.1.c.(5c)(7%产率),具有许多与(5b)相同的光谱特征。因此,它们的质量和i.r.光谱非常相似,归因于三个叔甲基的共振的化学位移模式也非常相似。此外,1H n.m.r.(5c)的光谱包含一个多重体,其位移位置和形状与(5b)中C-3处的轴向甲醇质子几乎相同。略低场的共振可归因于赤道甲醇质子。该证据被认为暗示(5c)是(5b)的异构体,前者中的轴向羟基代替后者中的7a-羟基而存在。由(5c)衍生的二乙酸酯和单乙酸酯(6a-c)的光谱特性支持了这一结论,并允许分配P。R. Jefferies 和 R. W. Retallack,Austral. J .化学, 1968,21, 1311;D.A. H. 泰勒,J .Chem. SOC. (C), 1967, 1360.6 L. M. Jackmann 和 S. Sternhell, 'Applications of NuclearMagnetic Resonance Spectroscopy in Organic Chemistry', Pergamon, Oxford, 1969, p. 237.Cf. B. P. Hatton, C. C. Howard, and R. A. W. Johnstone,J .C .S .Chem. Comm., 1973, 744.J. P. Beilby, E. L. Ghisalberti, P. R. Jefferies, M. A. Sefton,and P. N. Sheppard, Tetruhedvon Letters, 1973,2689.8 P. R. Jefferies, personal communication1204 J.C.S. Perkin Iof the axial hydroxy-group to C-7.Eu(dpm)对两种单乙酸酯(6b)和(6c)的lH n.m.r.谱中甲基共振的偏移特别有价值。对于极性较低的单乙酸酯(6b),诱导的位移处于归一化比率D中,这与C-3处的赤道羟基的存在完全一致。在极性更强的单乙酸酯(6c)中,两个C-4甲基的位移大小相似,而C-10和乙酰甲基的位移分别更大和更小。只有C-7的羟基才能为这些观察结果提供合理的解释。由于(512)的3-ax,7-eq-diol的替代天然配方与光谱数据不可调和,因此(5b)和(5c)通过将两者氧化成相应的三酮而牢固地建立了(5c)的结构。这对对映体二醇(8b和c)已经完成(见下文)。从其光谱特性可以明显看出,最具极性的转化产物也是酮二醇(5d)(收率为7%)。然而,其甲醇质子共振的不明确性质排除了它们在确定羟基位置时的使用。双乙酸酯 (7) 的 ThelH n.m.r. 谱图信息量更大。其中,类似的共振可归因于ABX系统的X部分,观察到的多重性表明两个甲醇质子都是区域性的,并且每个质子都耦合到两个邻近质子,单轴质子和一个赤道质子。因此,(5d)中的羟基官能团是赤道的,位于C-1、C-3或C-7。由于该最终转化产物与(5b)不同,因此它必须是l-eq,3-eq-或l-eq,'l-eq-diol。通过与Jefferies及其同事准备的(5d)样本数据进行比较,可以看出是前者。孵育从(lb)获得的17-Norkauran-16-one(lb).-T.1.c.trans-formation产物,发现混合物中存在相当数量的四种二萜类化合物,其中三种(Sa-c)与(2b)的产物是对映体,而第四个含有新的取代模式。通过色谱分离出所有四种,通过比较它们的物理和光谱特性与它们的对映异构体(Sa--c)的物理和光谱特性,分别鉴定出第一(l%)、第三(21%)和第四(8%)(色谱极性增加的顺序)为@a)、(8b)和(8c)。此外,(8b)和(8c)通过两者与三酮(9)的氧化而相关。另一种极性第二的成分是酮二醇(8d)(15%)。它的 i.r.、质量和 lH n.m.r.光谱强烈地表明其配方为酮 D。G. Buckley, G. H. Green, E. Ritchie, and W. C. Taylor,Chem. and Ind., 1971, 298.M. Hayano, M. Gut, R. I. Dorfman, 0.K. Sebek 和 DH Peterson、J. Amev。Chcm. Soc., 1968,80, 2336;E. J. Corey, G. A.Gregoriou, and D. H. Peterson, 同上, 第2338页。(a) J. W. Browne, W. A. Denny, Sir E. R. H. Jones, G. D.Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S.Perkin I, 1973, 1493;(b) V. E. M. Chambers, W. A. Denny,J. M. Evans, Sir E. R. H. Jones, A. Kasal, G. D. Meakins, and J.Pragnell, 同上, p. 1500.l1 G. Ferguson and W. C. Marsh, unpublished result.diol, with one hydroxy group secondary (equatorial), another tritiary.乙酰化证实了其中一个基团的三级性质,即使在强迫条件下也只形成单乙酸酯 (10)。(10)的lH n.m.r.谱在Eu(dpm)存在下运行,希望它可以指示叔羟基的位置。然而,添加移位试剂,即使数量不多,也不会引起足够大的移位以具有任何诊断价值,这可能是因为羟基受到太大阻碍而无法与试剂复合。虽然没有获得关于叔化取代基位置的信息,但现在可以检查Eu(dpm)诱导的母体二醇(8d)的lH n.m.r.光谱的变化,因为只有与仲醇络合才能阻止其大小的开采。事实上,甲基共振中诱导的位移的归一化比率与C-3处赤道羟基的预期l v 9非常吻合。(8d)和(10)的lH n.m.r.谱图允许将另一个羟基分配给两者 C-9a.In,H-15a的共振出现在远离其在C-7和C-9缺氧的相关化合物中的位置(约0.8 p.p.m.)。共振很容易根据其多样性进行分配。Innorkauran-16-ones 该质子显示出大的双子偶联,因为它与羰基相邻,此外还与 H-14P 具有长程偶联。因此,叔羟基必须位于 C-9 处,并且具有在机理上预期的 thea 取向,羟基通常具有与遭受微生物置换的氢原子相同的取向。因此,二醇可以表述为(€id),通过直接方法通过(IO)的X射线结构分析证实了l1。机理:本文报道的(lb)和(2b)的微生物氧化结果可以很容易地合理化,这是基于Jones,Meakins及其同事提出的关于黑R.黑菌对甾体底物的羟基化机制的扩展l 2~3。他们指出,某些甾体酮是二羟基化的,并认为12两个羟基可以由单个酶-底物复合物以协调的方式引入。他们认为,最简单的解释是涉及一种酶,它有三个活性位点,每个位点都具有结合和羟基化能力,位于三角形排列中,与类固醇核的C-3、C-11和C-16相对应[参见(lla)]。这预测了羟基化在许多情况下的位置,但不是全部,尽管它无法解释取向(a或p)。如果从三维意义上细化琼斯的表述,几乎所有相关结果 12-16 in13 Sir E. R. H. Jones, Pure Appl. Chem., 1973, a, 39.14 A. M. Bell, V. E. M. Chambers, Sir E. R. H. Jones, G. D.Meakins, W. E. Muller, and J. Pragnell, J.C.S.Perkin I, 1974,312.16 2.普罗查兹卡,阿布。申。Akad.Wiss. Berlin, Kl. Med., 1968,no. 2, 131.16 W. Charney and H. L. Herzog, 'Microbial Transformationsof Steroids', Academic Press, New York.19671975 1205 类固醇领域和这里报告的那些进行了解释。唯一需要的改进是定义一个参考H( l l a ) (12)norml (n)mode(Ilbl Act;密件抄送或 cop1anar;CPn(13) 反转 ( r ) 模式 ( 14) 倾覆 正常 ( CNL 模式 (15) 倾覆 反转 (cr 1 模平面 作为基底的甾体环系统,并要求相对于该平面 A 位点在下方,位点 B 在下方(或共面),位点 C 在上面 ( l l b )。类固醇的四种最明显的结合模式 12*13 绘制 [(12)-(15)]。当人们分析类固醇场的结果时,似乎未倾覆的模式(12)和(13)通常是结合的首选。在结合中,位点 A 有利于平面下方的氧原子和下方的羟基化 (a);位点 B 具有类似的结合要求,但可以羟基化 a(轴向或赤道)或 p(仅赤道);因此,在5a-雄甾烷衍生底物的情况下,12aa,3-酮与位点A(n模式)相互作用(16),aP-羟基插入C-16(位点C),在C-11(位点B)插入ana-羟基。另一方面,2-酮与位点 C(Y 模式)相互作用 (17) 和羟基插入 C-16(位点 A)和 tC-6(位点 B)。使用适当二取代的底物,12* 与结合位点的相互作用将得到优化。因此,17P-羟基-3-酮(18)主要在C-7处发生C-11羟基化[n模式;p-01位点C,C(3)=0 a t位点A],而其3p-OH,C(17)=0异构体(19)在C-7处羟基化[Y模式;p-01 a t位点C,C(17)=0位点A]。在功能被如此处置的情况下,不可能同时通过两个位点进行结合,那么将只使用一个位点,由此产生的不同可用结合模式之间的竞争产生产品的混合物126。在对一些次要产品进行核算方面遇到了困难。因此,C-17衍生物的羟基化在5a和6cc位置不容易被这里提出的模型合理化,除非假设涉及吸附模式,例如(20)*[参见(21)和(22)中的A位点C距离],羟基化在位点A.此外,似乎很可能在将第一个羟基插入B环或环c甾体单酮时, 除(12)-(15)外,还涉及相互作用模式,其中酮与位点A或位点C络合,而不是与预期的位点B络合。最后两点应该指出。首先,在单氧基质中,两个HO-',w(18)(20)0(19)0(211(23)(241羟基)可以通过顺序而不是同时的过程引入,其次,上述结合-羟基化位点的模型* 这种模式也可以解释在6a-羟基-5a-雄甾烷-17-酮中,以牺牲更常见的C-3羟基化为代价的相当多的lla-羟基化,12a, 6a-羟基适合与位点 A 相互作用 [C(17)=0 在位点 C 和位点 B 处的羟基化]1206 J.C.S.Perkin Imay 表示两个或多个酶单元上活性位点的位置和性质的总和。基于这种一般机制,以下酶-底物复合物 * 可以解释 (8a-d) 从 (lb) 和 (5a-d) 从 (2b) 产生。(lb)的酮与位点A的相互作用(21)(Y模式;环c舟?)将导致p-OH atC-3的插入,通过适当处置的羟基化位点C的参与。这解释了(8a)的形成。然后,(8a)中的两个官能团在相同的或新的活性区域引起(21)(Y模式)的结合,并允许羟基化(位点B)在7p-(赤道)或7a-位置进行,如用类固醇观察到的那样。然而,对于这种底物,分子模型表明,C(16)=0 与位点 A 的更有效相互作用可以通过从这种 Y 模式 (21) (环 c 椅子)开始,然后旋转它 ca 来实现。45“绕C-3,C-16轴,使H-9向下旋转并返回羟基化位点B.从而解释了三种产物(8b-d)的形成。在与(2b)形成的底物-酶复合物中,出现了两种可能的相互作用,Y模式(22)(环c船?)和cn模式(23)(环c椅子),两者都预测了(5a)的形成和进一步的攻击(5d)。(5b 和 c) 形成的羟基化 a t C-7 需要以倾斜的 CY 模式吸收底物 (24),当人们使用空间填充分子模型将 (24) 与 (19) 进行比较时,根据上述活性位点表示,这种相互作用似乎是可以接受的。实验或一般实验说明见参考文献1。除非另有说明,否则测量甲醇溶液的分子旋光度。报告的耦合常数是 observedvalues。将ent-17-iiorkauran-16-酮与C的Calonectriadecora.-培养物(2×2-25 1)孵育。在缺乏牛肉提取物(但含有所有必需营养素)的中 B l7 中生长 5 天。(2b)(707mg)加入DMF(50ml)溶液,剧烈搅拌发酵7天。滤去菌丝体,加入氯化钠(500g)后,用乙酸乙酯(每1.5 1滤液2×1.2 1)提取滤液。蒸发合并的乙酸乙酯馏分得到油(1.4g),在硅胶(60g)上绘制色谱图。[控制文化(2.5 l),仅含DMF(25 ml),处理类似。用醚轻质石油洗脱 (1 : 4) 首先得到起始酮 (2b),然后得到 ent- 17-去甲熊-16a-01 (4) (27 mg, 22y0), m.p. 160-162' (来自甲醇-水) (lit.,2 162-163') ;氧化氢 3630 cm-l;T 9.17、9.14 和 8.95(均为 s,四元 CMe)和 5-70(lH、m、W+ 30 Hz、H-16)。用更具极性的溶剂(包括乙酸乙酯-甲醇混合物)洗脱,仅得到通过analyticalt.1.c显示存在于对照提取物中的化合物。和n.m.r.菌丝体用乙酸乙酯提取,并且*一位裁判建议,在其中一些(见正文)中,底物与酶位点的相互作用可以得到优化,如果c采用舟构象.ent-17-Norkauran-16-one在硅胶(30g)上色谱得到起始酮(2b)。合并所有含有(2b)的馏分(总计584mg)。ent-17-Norkauran-16-one与Rhizopusnigricans的孵育-生长4天后,在全营养培养基3中培养Rhizopus nigricans的培养物(4×2.5 1)与ent-17-norkauran-16-one(2b)(总共2.0g)inDMF(50ml)一起接种。继续发酵5天,然后滤除菌丝体。加入氯化钠(1kg)后,用乙酸乙酯(每2.5 1滤液2×1.5 1)提取滤液。蒸发提取物得到油(8.3克),在硅胶(300克)上色谱。[.4 控制发酵(2.5 1)用同样的方法处理含有DMF(7ml)。用醚轻质石油(1 : 4 和 1 : 1)洗脱色谱柱,得到含有起始去甲酮 (2b) (600 mg) 和非二萜类化合物的馏分。后来的馏分含有以下转化产物.ent-3~-羟基-l'i-norlzauran-16-酮(5a).-用纯醚洗脱得到含有对照提取物中不存在的化合物的馏分(150mg)。该馏分的主要成分是非萜类真菌代谢物,通过在真空下在50“t或留下固体(75mg)下蒸馏除去,并经过仔细的制备t.1.c。(纯氯仿,然后是乙酸乙酯-轻质石油,1:3)。得到的酮醇(5a)(17 mg,1.7y0),由甲醇水结晶,然后由轻石油结晶,熔度为179-183'(lit.,l 179-181');Mixedm.p. 180-183“.ent-3p, 7p-二羟基-17-去甲烷-16-酮 (5b) .-用纯醚洗脱色谱柱,在后来的馏分中,得到白色固体(175 mg),在TLC上显示一种主要成分和一种次要成分,这两种成分均未存在于对照提取物中。制备t.1.c.(甲醇-乙基乙酸酯,1:19)分离这些化合物,得到酮二醇(5b)和少量的酮二醇(5c)(见下文)。甲醇-水结晶的酮二醇(5b)(175 mg,15%)的熔点为219-221'(据报道,s223-224');[一],-32';vOH 3630,vco 1740 cm-l;T (CDCl,)9-20、8.99 和 8。89 (所有 s, 四元 CMe)、7-32 [lH、dd、H-l5a(exo)、JSm 18、J15a、13 2 Hz] 和 6-22-6-90 (2H,复合 m、H-3 和 -7);T(吡啶)9.00、8.92 和 8.83(均为 s,季 CMe)、6-95(lH、dd、H-l5a)和 6-3-6-8(2H、配合物 m、H-3 和 -7);m/e 306 (goyo, Mf),291 [lo, (M - 15)+], 288 [25, (M - 18)+], 273 (30) 和 121 (100);混合M.P.8 221-223“.ent-3@,7a-二羟基-17-去甲熊烷-16-酮(5c).-用乙酸乙醚(1:1)洗脱的初始馏分含有(52)。通过制备t.1.c将其与主要污染物(5b)分离。(甲醇-乙基乙酸酯,1:19)。在甲醇-水和乙醚结晶时,酮二醇(5c)(75 mg,7%)具有m.p.208-210“,[a],-8 O;vOH 3620,vco 1747 cm-1;T(CDCl,)9.20、9.01和8.90(均为s,四元CMe),7.85(d,部分H-15a信号,J15a,13 1-5 Hz),6-70(lH,m,H-3,Wt 17 Hz),6-30(lH,m,H-7,W,8 Hz);T(吡啶)8.94、8.92和8-74(均为s,四元CMe)、7-55(d,H-16a信号的下场部分)、6.48(lH、m、H-3)和6-10(lH、m、H-7);m/e 306 (lo%, M+), 291 [5, ( M - 15)+], 288 [15, ( M - IS)+], 274 (13), 255 ( l l ) , 和 121 (100) (Found: C, '74.2;H, 9.8.CI,H~,,O~ 需要 C, 74.45;H, 9.85%).ent-l~,3~-二羟基-17-去甲熊-16-酮 (5d) .-Later17 J.W. Blunt, I. M. Clark, J. M. Evans, Sir E. R. H. Jones,G. D. Meakins, and J. T. Pinhey, J .嚼。(C),1971年,11361975用乙酸乙醚(1:1)洗脱的1207馏分含有酮二醇(5d)和一些(5c)。这些被制备 t 分开。1.c.(甲醇乙酸乙酯,1:19)。在甲醇-水结晶时,酮二醇(5d)(70mg,7%)有n1.p。246-251'(报告,8246246“);[一],-37';VOH 3630 厘米-升;T(CDCl,)9-22,9.05和8.84(均s,四纪CMe),64-6.9(2H,复合物m,H-1和-3);7(吡啶)8-99、8-85、8.67(均为s,季级CMe)、6-4-6.8(ZH、络合物ni、H-1和-3);nt/e 306 (17%, M+), 288 r31, (M - lS)-'], 273(22), 270 (39), 255 (44), 234 (70), 233 (loo), 232 (90): 191(70), 177 (63), 174 (60), and 163 (47).用乙酸乙酯提取菌丝体得到anoil(1.2g),其与先前分离的不纯(2b)合并。用醚轻石油(1:8)在硅胶上洗脱层析得到起始酮(2b)(965mg)。酮二醇(5c)的十六烷基化-酮二醇(5c)(65mg)用乙酸酐(1ml)和吡啶(4ml)在0“C下处理1小时,然后加入甲醇(2ml),在真空下蒸去溶剂,得到油,进行制备t.1.c。(氯仿)。保留了由二乙酸酯组成的上带和由两个单乙酸酯组成的中间带,并像以前一样洗脱了底部带中的大量起始材料并进行了乙酰化。经过4个循环和2 11反应时间的第5个循环后,通过制备t.1.c.分离产物,最小极性带含有ent-3pJ7a-二碳酰氧基-17-去甲烷-l6-酮(6a)(18 mg),其结晶时由醚-轻质石油和乙醚具有m.p.176-177";[一],-6';VCO 1740 厘米-升;T 9.23、9-15 和 8.88(均为 s,四纪 CMe)、7.97(6H、s、2 x OAc)、5.47(lH、m、H-3、W* 17 Hz)和 5-10(IH、m、H-7、W+ 8 Hz){发现:&I+、390.2410。C2.H3@5需要 M , 390.2406)。中间极性条带得到固体(35 mg),由两种化合物组成,通过制备t.1.c分离。(乙醇-氯仿1:100,运行三次)。极性较低的是ent-Sa-乙酰氧基-3P-羟基-17-去甲熊烷-1 6-酮(6b)(13 mg),从乙醚结晶时具有m.p.216-217“;V~H 3620,vco 1738 cm-l;T 9.18 (s, 19-H,), 9-07 (s, 18-H,), 8-87 (s, 2O-H,), 7.93 (s,OAc), 6.71 (IH, m, H-3, Wi 17 Hz) 和 5.07 (lH, m,H-7, Wt 8 Hz) (发现: M+, 348-2303.C,1H3204 requiresM , 348.2301)。在Eu(dpm)存在下,(28mg),(6b)(10mg)具有T 6-50(s,OAc),4.25(s,2O-H,),-0-70(s,18-H,)和-1.25(s,19-H,)。诱导位移的比值为19-H,:IS-H,:20-H,:OAc,为10:9.4:4.4:1.4.更极性的ent-3~-乙酰氧基-7a-羟基-17-去甲烷-16-酮(6c)(15mg),在乙醚结晶时,具有m.p.303-205“;V O ~ 3620, VCO 1740 cm-L;T 9.12 (s, 19- andI8-H3), 8-87 (s, 2O-H,), 7.95 (s, OAc), 6.27 (lH, m, H-7,Wg 8 Hz) 和 5.45 (lH, m, H-3, Wt 17 Hz) (Found: M+,348-2303.C,1H,,O4 requires M , 348.2301)。在Eu(dpm)的过程中,(27 mg)、(6c)(15 mg)具有T 7.20和7.07(均为s,季4-Me2)、6-30(OAc)和5.88(s,2O-H,)。诱导位移的比率为 20-H,:4-Me:4-Me:OAc,为 10:6.9:6.5:5.6。原始t.1.c的最极性波段平板由起始酮二醇(5C)(5mg)组成。酮二醇的十六烷基化(5d).-酮二醇(5d)(60mg)用乙酸酐-吡啶(1:1;5毫升)过夜。除去溶剂,然后制备t.1.c.(乙酸乙酯-轻质石油,1:2)得到ent-lp,3P-二酰氧基-17-novkauran-16-酮(7)(70mg),m.p.202-204“(来自乙醚);VCO 1740S CN1-L;7 9.12 (s, 19- 和 18-H3)、8.67 (s, 20-H、)、8.00 和 7-97 (s, 2 x OAc) 和 5-32 和 5.21 (m, H-1 和 -3, LVt 16 Hz) (Found: M',390-2410.C2,H,,05 需要 144, 390.2406)。将 17-Norkauran-16-one ( 1 b) 与 Rhizopusnigricans.-A 培养物 (2 x 2-5 1) 的 R. nigrzcans 在通常培养基中培养 3 天,然后用 17-Norkauran-16-酮 (lb) (843 mg) 在 DMF (20 ml) 中接种。继续发酵,剧烈曝气5 d。然后过滤掉菌丝体,加入氯化钠(500g)后,用乙酸乙酯(2×1.5,1/2-5,1)提取滤液。将提取物合并并除去溶剂,得到油。仅含有DMF(10ml)的对照培养物(2.5 1)的处理类似。将提取物与 byt.1.c 进行比较。这表明发酵提取物中存在至少四种附加化合物。将发酵提取物(2.7g)在硅胶(70g)上色谱。用醚轻石油(1 : 4)洗脱在早期馏分中得到被真菌代谢物污染的起始酮(Ib)。该洗脱液的后期馏分得到一种油(100mg),其中含有对照中不存在的另一种化合物.3~-羟基-17-去甲熊-16-酮(8a) .-制备t.1.c.(氯仿,运行两次),从该油中分离酮醇(8a)(10mg,1.3%)。在甲醇-水结晶时,酮醇的熔点为181-183“;[4, +33O {cf. enantiomer (5a), m.p. 180-183';[a], -45“);vOH 3620,vco 1740 cm-l;n.m.r.和质谱图为(5a)(发现:&I+,290-2247。Cl,H3,O2 需要 N,290-2246)。用纯乙醚洗脱得到由四种组分组成的固体,其中三种组分不存在于对照提取物中。这些通过重复的制备t.1.c分开。(轻石油-乙酸乙酯,1:3)得到四条带。顶部条带给出真菌代谢物(30 mg),该代谢物也存在于对照提取物中.3p,9a-二羟基-17-norkauvan-16-酮(8d).-条带二部分与条带三部分重叠,顶部部分给予纯酮二醇(8d)。对底部重新进行色谱分析。合并所有馏分的酮-酮(8d)(130 mg,15%),先结晶先醚-甲醇,然后选甲醇-水,m.p.224-226';[a& $17“;VOH 3618,vco 1742 cm-1;T (CDC1,)9.17 (s, 19-H,)、8.98 (s, l8-H,)、8.87 (s, 20-H,)、7.24 (lH, dd,H-15a, Jsem 19, J15a,14@ 2.5 Hz) 和 6.80 (IH, ni, H-3,15'4 16 Hz);T(吡啶)8.91和8.75(6H)(均为s,季级CMe),7.52(lH,dd,H-14P,Jge,,13,J14~.~5a2.5 Hz)和6.80 (lH, dd, H-15a);m/e 306 (27%, M+)、288 [loo, (M - IS)+], 270 [30, (N - 36)+], 255 (25)、245(60)、227 (67)、165 (33) 和 123 (100) (发现: C, 74.3;H, 10.0.C1&3@3 需要 C, 74.45;H,9.85%)。在Eu(dpm)存在下,(28mg),(8d)(30mg)具有z 7.40(s,20-H,),6-00(s,18-H,)和5-89(s,19-H,)。19-H, : IS-H, : 20-H,.3/3,7~-Dilzyd~oxy-l7-norkauran-l6-one (8b).-条带三的底部得到纯酮二醇(Sb)。顶部部分也包含(8d),是重新色度图。酮二醇(8b)(180 mg,21y0),由甲醇-水和甲醇结晶,m .p.225-226“;[a],, +34.5' {参见对映异构体 (5b), M.P. 219-221, 223-224“, [oilD -32'); v o ~ 3630, vco 1740 cm-l;T(吡啶)9.00、8-92和8-83(均为s,季级CMe)、6-95(lH、dd、H-15@、Jse、18、J158.13 1.5 Hz)和6-3-48(2H,复合物m、H-3和-7);nz/e 306 (SO%, Mt), 291[lo, (ill - 15)+], 288 [25, (-42 - 18)+j, 273 (35), and 121208 J.C.S. Perkin I(100) (Found: C, 74.25;H,9-95。C,,HsoOs 需要 C,74.45;H, 9.85%).3p, 7a-二羟基-17-去甲熊烷-18-酮(8c).-波段四含有少量不纯物质,其色谱行为与酮二醇(5c)相同。用乙醚乙酸酯(1:1)洗脱色谱柱得到更多的这种物质。该馏分与波段四结合并进行制备t.1.c。(轻石油+乙酸甲酯,1:3)得到油(100mg),该油通过t.1.c均匀。真空升华将真菌代谢物从挥发性较低的二萜类化合物(80mg)中分离出来。制备t.1.c.(甲醇-氯仿,1:19)得到的玻璃不能被诱导结晶。这种材料主要由酮二醇(约85%)(412欧元)和其他二萜类化合物(约16%)组成,VOH 3620,vco 1747 cm-1;T (CDCl,) 9-20、9-01 和 8.90(均为 s,四元 CMe)、7.85(d,部分 H-15P 信号,J158.13 1.5 Hz)、6-70 (lH、m、H-3、W+ 17 Hz) 和 6.30 (lH、m、H-7、W+ 8 Hz) 归因于 (8c),T 8.75 和 8.70 归因于杂质 [cf.n.m.r. of(SC)] 。用乙酸酐 - 吡啶(1:1.5ml)处理该不纯的二醇(23mg)过夜。除去溶剂,然后进行制备t.1.c.(乙酸乙酯-轻质石油,1:2,运行两次)得到3p,'Ia-二乙酸酯(25mg),在乙醚轻质石油结晶时(两次)的熔点为176-176';[a],+7' (CHCl,) {参见对映异构体 (6c), m.p. 175-177';[a],-6');i.r.、n.m.r.和质谱图与(6c)相同(Found: M+, 390.2410.C,,H,,05 需要 M,390.2406)。将菌丝体干燥并用乙醚提取,得到油(1.3g),该油与从滤液中获得的不纯原料(上图)混合。然后将该材料在硅胶(50g)上色谱。用乙醚轻质石油洗脱 (1 : 4),然后进行制备 t.1.c。(乙酸乙酯-轻质石油,1:12),得到起始去甲酮(lb)(72mg)。酮二醇(8d)的乙酰化(8d)-酮二醇(8d)的收率为8%。(46mg)用乙酸酐-吡啶(5ml;1:1)处理3 h。溶剂蒸发,然后制备t.1.c。(甲醇-氯仿,1:30)得到3p-a.乙氧基-9~-羟基-l7-诺考万-16-酮(10)(41mg),熔点291-295'(来自甲醇);[a], + 17.5O (CHCI,);VOH3620,VCO 1737 cm-l;T 9.11 (s, 19- 和 l8-H,), 8.75 (s,20-HJ, 7.80 (s, OAC), 7.48 (lH, dd, H-l4P, Jsem 13, J1,fi,lso!2.5 Hz), 7.20 (IH, dd, H-15a, Jm 19, J 1 5 a r , l ~ 2.5 Hz),330 [3, (M - IS)'], 289 (62), 288 [loo, (M - 60)+], 270 和 5.50 (lH, m, H-3, Wt 17 Hz); 米/当年 348 (a%, M+)、(32)、255 (48)、245 (70)、227 (go) 和 165 (53) (Found:C, 72.1;H, 9.4.酮二醇(8b)的氧化 .-丙酮(15ml)中的酮二醇(8b)(62mg)用Jones试剂(0.2ml)处理15分钟。加入水,然后用乙醚牵引得到粗三酮。由乙醚17-去甲脲-3,7,16-三酮结晶(9)(46mg).had m.p. 140-142';[a], +So (CHCl,);VCO 1745 和 1710 cm-L;7 8.89 (6H) 和 8-63 (均为 s, 四纪 CMe) 和 6.88 (lH, dd, H-l5P, Jgm 18, J I 5 f i . 1 3 1.5 Hz);m/e 302(54%, M+)、260 (75)、217 (45)、164 (70) 和 136 (100)(发现: C, 75.2;H,8.8。C,,H,BO,需要 C,75.45;H,8.65%)。酮二醇(8c).-不纯酮二醇(8c)(31mg)的氧化用Jones试剂氧化(8b)。对粗产品进行制备t.1.c。(乙基乙酸盐-轻石油,2:3)得到三酮(9)(19mg),熔点140-142'(来自乙醚),与(9)制备的样品相同(N.M.R. ANDI.R.和质谱图);混合 MP 140-142'。C,,H,,O,需要 C,72.4;H,9.25%)。我们感谢加拿大国家研究委员会(National Research Council of Canada)的运营补助金(R. McC.)和奖学金(J.K.T.)。我们还要感谢挪威特隆赫姆的 T. Anthonsen 博士提供高分辨率质谱,并感谢圭尔夫大学的 G. L. Barron 博士提供礼物-官方培养。[4/2667 收稿日期: 1974-12-09

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号