首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Studies on the syntheses of heterocyclic compounds. Part 673. New routes to benzoaquinolizines
【24h】

Studies on the syntheses of heterocyclic compounds. Part 673. New routes to benzoaquinolizines

机译:杂环化合物的合成研究.第 673 部分。苯并a喹嗪的新路线

获取原文
获取外文期刊封面目录资料

摘要

1976 2547Studies on the Syntheses of Heterocyclic Compounds. Part 673.t NewRoutes to BenzoaquinolizinesBy Tetsuji Kametani," Hirofumi Terasawa, and Masataka Ihara, Pharmaceutical Institute, Tohoku University,Aobayama, Sendai, JapanHeating 3,4-dihydro-6,7-dimethoxy-l -methylisoquinoline (1 ) with crotonic anhydride (2) gave 3,4.6,7-tetra-hydro-9.1 O-dimethoxy-4-methylbenzoaquinolizin-2-one (5) along with 2-crotonoyl-l.2.3.4-tetrahydro-6.7-dimethoxy-1 -methyleneisoquinoline (3) and N- (2-acetyl-4.5-dimethoxyphenethyl)crotonamide (4). Heating theisoquinoline (1) with glutaconic anhydride (1 7) in pyridine provided 7,6,7,11 b-tetrahydro-9.1 O-dimethoxy-1 1 b-methylbenzoaquinolizin-4-one (1 9).IN approaches to a synthesis of emetine,1-8 which possessesimportant biological activity, numerous methods ofsynthesising benzoa quinolizines have been developed.Recently, the photocyclisation of N-aroyl-l,2,3,4-tetra-hydro-l-methyleneisoquinolines was reported to be suc-cessful in the synthesis of dibenzoa,gquinolizine deriv-ati~es.9~~0 With the intention of studying the cyclis-ation of Y-( a- or p-substituted acryloyI)-l,2,3,4-tetra-hydro- 1 -meth yleneisoquinolines to benzo a quinolizines,we heated 3,4-di hydro-6,7-dimethoxy- 1 -met hylisoquino-line (1) I1 with crotonic anhydride (2) in pyridine; theresulting crude material was purified by alumina columnchromatography to afford three products.The mainproduct (65 yield) was the desired enamide (3), identi-fied by spectroscopic analysis.Irradiation of the en-amide (3) in one of several solvents or treatment withany of several kinds of acid including a Lewis acid gaveone of the minor products isolated originally, which wasidentified as N- (2-acetyl-4,5-dimethoxyphenethyl)croton-amide (4). Its mass spectrum showed a molecular ionpeak at m / e 291 and its n.m.r. spectrum (deuteriochloro-form) exhibited two C-methyl signals 6 1.82 (dd, J 2 and7 Hz) and 2.56 ( s ) in addition to a signal for two 0-methyl groups 6 3.88 (s). Several attempts to cyclisethe enamide (3) to a benzoaquinolizine (6) resulted infailure.The other minor product, obtained in 17.57L yield from(1) showed a molecular ion peak at m/e 273, i.r. carbonylabsorption at 1 605 cm-l (chloroform), and in the n.m.r.spectruni one C-methyl signal at 6 1.32 (d, J 6 Hz), twoO-methyl signals at 6 3.85 and 3.89 (each s), and threeolefinic proton signals a t 6 5.55, 6.64, and 7.11.On thebasis of the above spectral data, two possible structures, (5)t Part 672, T. Kametani, C. Ohtsuka, H. Nemoto, and K.Fukumeto, Chem. and Pharm. Bull. (Japan), 1976, 24, 2525.R. R. Evstiegneeva, R. S. Livishits, L. I. Zakharkin, A$. S.Eainova, and N. A. Preobrazhenskii, Doklady Akad. Nauk S.S.R.,1950, '75, 539.M. Barash and J. 3i. Osbond, Chem. and Itzd., 1958, 490;1959,257.A. t h s s i , M. Baumaiin, and 0. Schnider, Helv. Chim. Acta,1959, 42, 1515; A. Brossj and 0. Schnider, ibid., 1962,45, 1899.*A. IV. Burgstahler and Z. J. Bithos, J . Amev. Chem. SOC.,1959, 81, 503; 1960, 82, 5466.:' A.R. Battersby and J. C. Turner, J . Chem. Soc., 1960, 717.D. 1:. Clark, R. P. K. Meredith, A. C. Ritchie, and T. Walker,J . Chew. Sac., 1962, 2490. ' E. E. van Tamelen, G P. Schiemenz, and H. L. Arons,Trtvuhedi (312 Letters, 1963, 1005; E. E. van Tamelen, C. Placeway,G. P. Scliiernenz, and I. G. IVright, J . Amev. Chem. SOG., 1969, 91.7359.and (6), were considered for the product. Tlie compoundwas then hydrogenated over Adams catalyst and theresulting material was compared with the methyl-benzoaquinolizin-4-one (1 1) , synthesised as follows.Heating 3,4-dimethoxyphenethylamine (7) with 3-methylglutaric acid (8) at 240 "C yielded the glutarimide(9) in 52 yield, which was reduced in ethanol withsodium borohydride in the presence of hydrochloric acid l2to furnish the ethoxypiperidine (10) in 917; yield. Re-fluxing the amide (10) with toluene-$-sulphonic acid inbenzene l2 provided a ca.1 : 1 epimeric mixture ofbenzoaquinolizin-4-ones (1 1) in 94 yield. This sampleof (11) was not identical with the foregoing reductionproduct (t.1.c. and spectral comparison), thus excludingstructure (6). Reduction of (11) with lithium aluminiumhydride followed by preparative t.1.c. gave two com-pounds (12) and (13) in 32 and 37 yield, respectively.Because both compounds showed Bohlmann-type i.r.absorptions a t 2 800-2 700 cm-l (chloroform) and noangular llb-proton signal below 6 3.8 in their n.m.r.spectra (deuteriochloroform) 1 3 9 1 4 they are considered toexist in the trans-form. Compound (12) showed the C-methyl signal at 6 1.10 as a doublet, J 6 Hz, whereascompound (13) showed the corresponding signal at 6 1.02as a doublet, J 5 Hz.Compound (5) was dehydrogenated by refluxing withpalladium oxide in xylene to give the dienone (15), M+271, 6 (CDC1,) 2.39 (s, Me) and 6.24, 6.72, 6.73, and 7.17(each lH, s, olefinic), identical with material synthesisedfrom 1,6,7,11 b-tetrahydro-9,10-dimethoxy-4-met hyl-benzoaJquinolizin-one ( 14)15 by oxidation with potas-sium permanganate or palladium oxide.It was con-sidered that compound (5) was formed via the enamineH. T. Openshaw and N. Whittaker, J . Chew. SOC. ( C ) , 1969,G. Lenz, J . Org. Chem., 1974, 39, 2839, 2846.lo I. Ninomiya, T.Naito, and H. Takasugi, J.C.S. P ~ r k i n I,l1 E. Spath, Bev., 1935, 71, 113.l2 J. C. Hubert, W. N. Speckamp, and H. 0. Huisman,TetiTahedron Letters, 1972, 4493; J. B. P. A. Wijnberg, W. N.Speckamp, and H. E. Schoemaker, ibid., 1974,4073 ; J. C. Hubert,J. Is. P. A. Wijnberg, and W. N. Speckamp, Tetvahedron, 1975,31,1437.l3 M. UskokoviC, H. Bruderer, C. von Planta, T. Williams, andA. Brossi, J . Amev. Chem. SOC., 1964, 86, 3364.l4 T. Kametani, K. Fukumoto, M. Ihara, A. ITjiie, and H.Koizumi, J . Org. Chem., 1975, 40, 3280.l5 M. von Strandtmann, M. P. Cohen, and J. Shavel, jun., J .Org. Chem., 1966 31 797.89.1975, 17202548 J.C.S. Perkin IMe( 1 IMe( 3 )+HO2C COZHI t( 6 1 MeMe(121i-- - -Me(13 IMe(911(I410(15)(16) produced by Michael addition of the 3,P-dihydro-l-methylisoquinoline (1) to crotonic anhydride (2).Heating the 3,4-dihydro-l-methylisoquinoline (I) at100 "C with glutaconic anhydride in pyridine followedby chromatography on alumina afforded, in 56 yieldas the sole product, 1,6,7,1 lb-tetrahydro-9,lO-dimethoxy-11 b-methylbenzoaquinolizin-4-one (19).The massspectrum showed the molecular ion peak at m / e 273 andthe i.r. spectrum (chloroform) exhibited carboiiyl ab-sorption at 1625 cm-l. In the n.m.r. spectrum one C-methyl signal was observed at 6 (CDC1,) 1.69 ( s ) , two0-methyl signals a t 3.84 and 3.87, two aromatic protonsignals at 6.57 and 6.72 (singlets), and resonances for twoolefinic protons at 5.75 (dt, J 3.4 and 10 Hz) and 6.18 (d,J 10 Hz).Structure (19) was further supported by the13C n.m.r. spectrum (deuteriochloroform), which showedsignals for sixteen carbon atoms, assigned by comparisonswith models 14916917 and on the basis of splitting patternsin the off-resonance-decoupled spectrum : 1 lb-Me at 1976 254930.9, C(1) at 30.3 and/or 34.9, C(2) at 131.4, C(3) at 119.4,C(4) at 165.9, C(6) at 30.3 and/or 34.9, C(7) at 27.8, C(7a)at 125.8, C(8) at 110.8, C(9) and C(l0) at 146.8, C(11) at107.9, C(l1a) at 131.4, C(l1b) at 59.6, and two O-Meat 55.4 and 55.0. Compound (19) was presumablyformed by nucleophilic attack of the methylene carbonof glutaconic anhydride at C-1 of the dihydroisoquinoline(1) ,15 followed by cyclisation of the resulting anhydride(18) accompanied by decarboxylation.j - c o 22 (19)EXPERIMENTAL1.r.spectra were taken with a Hitachi EPI-3 recordingspectrometer, n.m.r. spectra with a JEOL JNM-PMX-60spectrometer, 13C n.m.r. spectra with a JEOL JNM-PFT-100system equipped with a JNM-PS-100 spectrometer, andmass spectra with a Hitachi R M U - 7 spectrometer.2-Crotonoyl- 1,2,3,4-tetrahydro-6,7-dirnethoxy- I-methylene-isoquinoline (3), N-( 2-AcetyZ-4,5-dimethoxyphenethyZ)cro-tonarnide (4), and 3,4,6,7-Tetrahydro-9,1O-dimethoxy-4-methyZ-benzoaquinolizin-2-one (5) .-TO a solution of 3,4-dihydro-6,7-dimethoxy- l-methylisoquinoline (1) l1 (1,5 g ) in pyri-dine (2 ml), crotonic anhydride (2) (1.2 g) was added, andthe resulting mixture was heated on a water-bath for 2 hunder nitrogen.After cooling, water (20 ml) was added andthe solution was extracted with benzene. The extract waswashed with water, dried (Na,SO,), and evaporated to givea red syrup (2.2 g), which was chromatographed on neutralalumina (grade 111). Elution with benzene afforded theenamide (3), which was recrystallised from n-hexane to giveneedles, m.p. 125", vmax (CHCl,) 1655 and 1605 cm-1; 6(CDCl,) 1.85 (3 H, d, J 6 Hz, Me), 2.83 (2 H, t, J 6.5 Hz,ArCH,), 3.86 (3 H, s, OMe), 3.90 (3 H, s, OMe), 4.03 (2 H,t, J 6.5 Hz, CH,*N), 4.87 and 5.57 (each 1 H, each s, XH,),6.25-7.20 (2 H, m, 2 x olefinic H), 6.56 (1 H, s, 5-H), and7.09 (1 H, s, 8-H); m/e 273 (M+) (Found: C, 70.1; H, 6.95;N, 5.0. C,,H,,NO, requires C, 70.3; H, 7.0; N, 5.15).Further elution with benzene-methanol (99 : 1 v/v) gave theamide (4) (150 mg, 7), which was recrystallised frombenzene to afford needles, m.p. 146", vmax (CHC1,) 1655,16 E.Wenkert, B. Chauncy, K. G. Dava, A. R. Jeffcoat, F. M.Schell, and H. P. Schenk, J . Amer. Chem. SOC., 1973, 95, 8427;E. Wenkert, J. S. Bindra, C.- J. Chang, D. W. Cochran, and F. 31.Schell, Accounts Chem. Res., 1974, 7, 46.1 625, and 1600 cm-1; G(CDC1,) 1.82 (3 H, dd, J 2 and 7 Hz,Me), 2.56 (3 H. s, Ac), 2.99 (2 H, t, J 6.5 Hz, ArCH,), 3.50 (2H, t, J 6.5 Hz, CH,*N), 3.88 (6 H, s, 2 x OMe), 5.75 (1 H, d,J 15 Hz, COCH=), 6.41 - 7.25 (1 H, m, COCH=CH), 6.73 (1H, s, 5-H), and 7.14 (1 H, s, 8-H); rn/e 291 ( M f ) (Found: C,65.7; H, 7.15; N, 4.7. C16H,1N04 requires C, 65.95; H,7.25; N, 4.8).Further elution with benzene-methanol(98 : 2 v/v) gave the benzoaquinoZizine (5) (350 mg, 17.5),which was recrystallised from benzene to afford pale yellowneedles, m.p. 156-157", vmx. (CHCl,) 1 605 and 1 580 cm-l;G(CDC1,) 1.32 (3 H, d, J 6 Hz, Me), 2.05-3.80 (7 H, m), 3.85(3H,s,OMe),3.89(3H,s,OMe),5.55(lH,s,l-H),6.64(1H,s, 5-H), and 7.11 (1 H, s, 8-H); wz/e 273 (M+) (Found: C,70.2; H, 6.9; N, 5.05. C1,H1,NO, requires C, 70.3; H,7.0; N, 5.15).(9) .-Amixture of 3,4-dimethoxyphenethylamine (7) (1.8 g) and 3-methylglutaric anhydride (8) (1.5 g) was heated a t 240 "Cuntil the formation of water had ceased. After cooling,the mixture was dissolved in chloroform, which was thenwashed with aqueous 5 sodium hydroxide and saturatedaqueous sodium chloride solution, dried (Na,SO,), andevaporated.The resulting solid, after trituration with coldbenzene, was crystallised from benzene-n-hexane to affordthe glutarimide (9) (1.5 g, 52) as scales, m.p. 123" (lit.,I*116.5-118"), v,,,. (CHCl,) 1715 and 1665 cm-1; 6 (CDCl,)1.05 (3 H, d, J 6 Hz, Me), 3.83 (3 H, s, OMe), 3.86 (3 H, s,OMe), and 6.73 (3 H, s, 3 x ArH).idone (10) .-Sodium borohydride (250 mg) was added insmall portions to a stirred solution of the glutarimide (9)(250 mg) in ethanol (25 ml) a t -10 "C. At regular intervals(ca. 15 min), 2-3 drops of 4~-hydrochlork acid were addedduring 4 h, with stirring. The excess of sodium borohydridewas decomposed by slow addition of hydrochloric acid to thecooled solution, until pH 3 was reached.The mixture wasthen stirred for an additional 45-60 min a t 50 "C, neutralisedwith ethanoIic 1 potassium hydroxide and evaporated.Extraction of the residue with chloroform, followed by evap-oration, afforded the amide (10) (200 mg, 91) as an oil,vmaZ (CHCl,) 1 630 cm-1; 6 (CDC1,) 0.83 (3 H, d, J 6 Hz, Me),1.07 (3 H, t, J 7 Hz, CH,IMe), 4.13 (1 H, t, J 3 Hz, EtOCH-N),and 6.62 (3 H, s, 3 x ArH), which was used withoutfurther purification.1,2,3,6,7,1 lb-Hexahydro-9,10-dirulethoxy-2-wethylbenzo a-quinolizin-4-one( 11). -A solution of the amide (10) (200mg) in benzene (50 ml) containing toluene-fi-sulphonic acid(70 mg) was refluxed for 3 h. After cooling, the benzenelayer was washed with saturated aqueous sodium hydrogencarbonate and saturated aqueous sodium chloride, dried(Na,SO,), and evaporated to leave the product (11) as anoily mixture of epimers (160 mg, 94) vmX (CHClJ 1620cm-l; 8 (CDC1,) 1.11 (3 H, m, Me), 3.83 (6 H, s, 2 x OMe),4.40-5.15 (2 H, m, 6- and Ilb-H), 6.58 (1 H, s, ArH), and6.63 (1 H, s, ArH), which was used without further purific-ation.1,3,4,6,7,1 lba-Hexahydro-9,10-dimethox~y-2~-metlzyl-2H-benzoaquinoZizine Racemate of (12) and its 2a-MethylIsomer Racemate of ( 13) .-To a suspension of lithium alu-minium hydride (15 mg) in dry tetrahydrofuran (20 rnl), asolution of compound (1 1) (100 mg) in dry tetrahydrofuranl7 R.H. Levin, J.-Y. Lallemand, and J. D. Roberts, J . 09.g.lS T. Kametani, T. Hayasaka, S.Takano, and S. Akaboshi, J .N- (3,4-DimethoxyphenethyZ) - 3-methylgZutarivnideN- (3,4-DimethoxyphenethyZ) - 6-ethoxy-4-methyl-2-fiiper-Chem., 1972, 38, 1983.Pharm. SOC. Japan, 1962, 82, 9562550 J.C.S. Perkin I(10 ml) was added dropwise with stirring a t room temper-ature. After stirring for further 0.5 h, the solution was re-fluxed for 3 h and the excess of lithium aluminium hydridewas then decomposed by slow addition of aqueous 40 so-dium hydroxide. The solution was evaporated to give anoil which was extracted with ether. The extract was washedwith saturated aqueous sodium chloride, dried (Na,SO,) , andevaporated to leave an orange oil (80 mg) , which was puri-fied by a preparative t.1.c. on silica gel benzene-ethylacetate-methanol (5 : 5 : 2 v/v) to afford the products(12) (30 mg, 32), as an oil, vm9.(CHC1,) 2 800-2 700 and1600 cm-l; G(CDC1,) 1.10 (3 H, d, J 6 Hz, Me), 3.80 (6 H,s, 2 x OMe), 6.53 (1 H, s, ArH), and 6.62 (1 H, s, ArH) ; wz/e261 (M+) the hydrochloride formed needles, n1.p. 215-216"(from ethanol-ether) (Found: C, 64.05; H, 8.15; N, 4.6.C1,H24C1N02 requires C, 64.5; H, 8.1; N, 4.7), and (13)(35 mg, 37), as an oil, vnmx. (CHC1,) 2 800-2 700 and 1 600cm-l; 6 (CDC1,) 1.02 (3 H, d, J 5Hz, Me), 3.82 (6H,s, 2 xOMe), 6.55 (1 H, s, ArH), and 6.68 (1 H, s, ArH); nz/e 261(M+) the hydrochloride formed needles, m.p. 195-198" (fromethanol-ether) (Found: C, 63.45; H, 8.35; N, 4.45.C,,H2,C1N02,0.25H,0 requires C, 63.55; H, 8.15; N,4.65y0).5,6-Dihydro-9,1O-dimethoxy-4-wzethylbenzofaquinoZizin-2-one (15) .-(a) Oxidation of compound (14).(i) With potassiumpermangannte. A mixture of compound (14) (50 mg), po-tassium permanganate (29 mg), and acetone (10 ml) wasstirred for 5 h a t room temperature. Manganese dioxidewas precipitated out and the solution became colourless.The mixture was filtered through Celite and evaporated toafford a powder (45 mg), which was recrystallised from ace-tonetogive thedienone (15) (40mg, 80) as needles, m.p. 262",v,,,. (CHCl,) 1 630 and 1 610 cm-1; 6 (CDC1,) 2.39 (3 H, s,Me), 2.98 (2 H, t, J 7 Hz, ArCH,), 3.89 (3 H, s, OMe), 3.91(3H, s, OMe), 4.02 (2H, t, J 7, CH,*N), 6.24 (1 H, d, J 2.5Hz, 1- or 3-H), 6.72 (1 H, s, 8-H), 6.73 (1 H, d, J 2.5 Hz, 1-or 3-H), and 7.17 (1 H, s, 11-H); wale 271 (MT) (Found: C,70.45; H, 6.35; N, 5.1.C1,H1,NO, requires C, 70.85; H,6.3; N, 5.15).A suspension of compound (1 4)(100 mg) and palladium oxide (100 mg) in xylene (10 ml)was refluxed for 20 h. After cooling, the mixture was filtered(ii) With palladium oxide.through Celite and evaporated to afford a powder (80 mg),which was recrystallised from acetone to give (15) (70 mg,70) as needles, m.p. 262", the spectral data of which wereidentical with those of the above compound.(b) Dehydrogenation of compound (5) with palladium oxide.A suspension of compound (5) (60 mg) and palladium oxide(80 mg) in xylene (5 ml) was refluxed for 24 h. After cooling,the mixture was filtered through Celite and evaporated togive a black oil (50 mg) , which was purified by preparativet.1.c. on silica gel benzene-ethyl acetate-methanol (5 : 5 : 2v/v).A fraction of RB 0.2 gave compound (15) (15 mg,30) as needles, m.p. 262", with spectral data identicalwith those of the foregoing product.1,6,7,1 lb-Tetmhydro-9,lO-dimethoxy-1 lb-methylben,zoa-qztinolizin-4-one (1 9) .-A solution of 3,4-dihydro-6,7-d;-methoxy- 1-niethylisoquinoline ( 1) (200 mg) and glutaconicanhydride (17) lg (1 10 mg) in pyridine (2 ml) was heated ona water-bath for 3 h. After cooling, water (5 ml) was addedt o the resulting red solution, which was then extracted withether. The extract was washed with saturated aqueoussodium chloride, dried (Na,SO,), and evaporated to give anorange oil (1 90 mg) , which was chromatograplied on neutralalumina (grade 111). Elution with benzene afforded asolid which was recrystallised from n-hexane to give theproduct (19) (150 mg, 56) as needles, m.p. 115", vmax. (CHCl,)1 625 cm-1; 6 (CDCl,) 1.69 (3 H, s, Me), 2.36-3.43 (5 H, m,1-H2, 6-H, and 7-H,), 3.84 (3 H, s, OMe), 3.87 (3 H, s, OMe),4.93-5.25 (1 H, m, 6-H), 5.75 (1 H, dt, J 3.4 and 10 Hz,2-H), 6.18 (1 H, d, J 10 Hz, 3-H), 6.57 (1 H, s, ArH), and6.72 (1 H, s, ArH); m/e 273 (M+) (Found: C, 70.1; H,6.85; N, 4.9. C,,H,,NO, requires C, 70.3; H, 7.0; N,5.150,;) *We thank Dr. M. Koizumi, Mr. K. Kawamura, Mrs. C.Koyanagi, Miss K. Mushiake, Mrs. R. Kobayashi, Miss R.Suenaga, Miss E. Nagaoka, Miss XI. Tanno, and Miss H.Koizumi for microanalyses and spectral measurements.6/1323 Reccived, 7th July, 19761l9 W. H. Perkin, jun., and G. Tattersall, J . Chem. Soc., 1905,87, 364
机译:1976 2547杂环化合物合成研究.第 673.t 部分新通往苯并[a]喹嗪的路线作者:Tetsuji Kametani,“Hirofumi Terasawa 和 Masataka Ihara,东北大学药学研究所,日本仙台青叶山用巴豆酸酐加热 3,4-二氢-6,7-二甲氧基-l-甲基异喹啉 (1) 得到 3,4.6,7-四氢-9.1 O-二甲氧基-4-甲基苯并[a]喹嗪-2-酮 (5) 以及 2-巴豆酰基-l.2.3.4-四氢-6.7-二甲氧基-1-亚甲基异喹啉 (3) 和 N-(2-乙酰基-4.5-二甲氧基苯乙基)巴豆酰胺 (4)。用吡啶中的谷氨酸酸酐(1,7)加热异喹啉(1),得到7,6,7,11,β-四氢-9.1,O-二甲氧基-1,1,β-甲基苯并[a]喹嗪-4-酮(1,9)。在合成具有重要生物活性的依米丁1-8的方法中,已经开发了许多合成苯并[a]喹嗪的方法。最近,报道了N-芳酰基-l,2,3,4-四氢-l-亚甲基异喹啉的光环化反应成功合成了二苯并[a,g]喹嗪衍生物-ati~es.9~~0,以研究Y-(a-或p-取代的丙烯酰I)-l,2,3,4-四氢-1-甲基基异喹啉的环化反应为苯并[a]喹嗪,将3,4-二氢-6,7-二甲氧基-1-甲基羟基喹啉与巴豆酸酐(2)在吡啶中加热;所得粗料经氧化铝柱层析法提纯,得到三种产品。主要产物(65%产率)是所需的烯酰胺(3),通过光谱分析确定。在几种溶剂中的一种中辐照烯酰胺(3)或用几种酸中的任何一种处理,包括最初分离出的路易斯酸得到的次要产物之一,其被鉴定为N-(2-乙酰基-4,5-二甲氧基苯乙基)巴豆酰胺(4)。其质谱显示m/e 291处的分子离子峰,其n.m.r.谱图(氘氯形式)表现出两个C-甲基信号[6 1.82(dd,J 2和7 Hz)和2.56(s)],此外还有两个0-甲基的信号[6 3.88(s)]。多次尝试将烯酰胺 (3) 环化为苯并[a]喹嗪 (6) 均以失败告终。另一个次要产物,产率为17.57L,产率为17.57L,在m/e 273处为分子离子峰,即在1 605 cm-l(氯仿)处羰基实验室吸附,在n.m.r.spectruni中,在6 1.32 (d,J 6 Hz)处有一个C-甲基信号,在6 3.85和3.89处有两个O-甲基信号(各s),在三个烯烃质子信号a t 6 5.55, 6.64 和 7.11.根据上述光谱数据,有两种可能的结构,(5)t 第 672 部分,T. Kametani、C. Ohtsuka、H. Nemoto 和 K.Fukumeto, Chem. and Pharm. Bull.(日本), 1976, 24, 2525.R. R. Evstiegneeva, R. S. Livishits, L. I. Zakharkin, A$.S.Eainova 和 N. A. Preobrazhenskii、Doklady Akad。Nauk S.S.R.,1950, '75, 539.M. Barash and J. 3i. Osbond, Chem. and Itzd., 1958, 490;1959,257.A. t h s s i , M. Baumaiin, and 0.施尼德,赫尔夫。噗噗。学报,1959, 42, 1515;A. Brossj 和 0.Schnider, 同上, 1962,45, 1899.*A. IV.Burgstahler 和 Z. J. Bithos, J .阿梅夫。化学SOC.,1959, 81, 503;1960, 82, 5466.:' A.R. Battersby 和 J. C. Turner, J .Chem. Soc., 1960, 717.D. 1:.克拉克,R. P. K. 梅雷迪思、AC 里奇和 T. 沃克,J。嚼。Sac.,1962 年,2490 年。' E. E. van Tamelen, G P. Schiemenz, and H. L. Arons,Trtvuhedi (312 Letters, 1963, 1005; E. E. van Tamelen, C. Placeway, G. P. Scliiernenz, and I. G. IVright, J .阿梅夫。Chem. SOG., 1969, 91.7359.和 (6) 被考虑用于该产品。然后将Tlie化合物在Adams催化剂上加氢,并将所得材料与%甲基苯并[a]喹嗪-4-酮(1,1)进行比较,合成如下。在240“C下加热3,4-二甲氧基苯乙胺(7)与3-甲基戊二酸(8),得戊二酰亚胺(9)的收率为52%,在盐酸l2存在下,在乙醇中用硼氢化钠还原,得到乙氧基哌啶(10);屈服。将酰胺(10)与甲苯-$-磺酸苯l2重新通化,得到苯并[a]喹嗪-4-酮(1,1)的约1:1差向异构混合物,收率为94%。该样品(11)与上述还原产物(t.1.c.和光谱比较)不相同,因此排除了结构(6)。用氢化铝锂还原(11),然后制备t.1.c。分别以 32% 和 37% 的收率给出了 2 磅 (12) 和 (13)。因为这两种化合物都显示出Bohlmann型i.r.吸收 a t 2 800-2 700 cm-l (氯仿) 和 noangular llb-质子信号 低于 6 3.8 在其 N.M.R.光谱 (氘氯仿) 1 3 9 1 4 中,它们被认为存在于反式形式中。化合物(12)在6 1.10处显示C-甲基信号为双峰,J 6 Hz,而化合物(13)在6 1.02处显示相应的信号为双峰,J 5 Hz.化合物(5)在二甲苯中用氧化钯回流脱氢,得到二烯酮(15)、M+271、6(CDC1,)2.39(s,Me)和6.24、6.72、6.73和7.17(各lH, s, 烯烃),与1,6,7,11 b-四氢-9,10-二甲氧基-4-甲基羟基苯并[aJ喹嗪-%酮(14)15通过与高锰酸钾或氧化钯氧化合成的材料相同。有人认为化合物(5)是通过烯胺H形成的。T. Openshaw 和 N. Whittaker, J .嚼。SOC. ( C ) , 1969,G. Lenz, J .Org. Chem., 1974, 39, 2839, 2846.lo I. Ninomiya, T.Naito, and H. Takasugi, J.C.S. P ~ r k i n I,l1 E. Spath, Bev., 1935, 71, 113.l2 J. C. Hubert, W. N. Speckamp, and H. 0.豪氏威马,TetiTahedron Letters,1972,4493;J. B. P. A. Wijnberg, W. N. Speckamp, and H. E. Schoemaker, 同上, 1974,4073 ;J.C.休伯特,J.是。P. A. Wijnberg, and W. N. Speckamp, Tetvahedron, 1975,31,1437.l3 M. UskokoviC, H. Bruderer, C. von Planta, T. Williams, andA.布罗西,J .阿梅夫。Chem. SOC., 1964, 86, 3364.l4 T. Kametani, K. Fukumoto, M. Ihara, A. ITjiie, and H.Koizumi, J .Org. Chem., 1975, 40, 3280.l5 M. von Strandtmann, M. P. Cohen, and J. Shavel, jun., J .Org. Chem., 1966 31 797.89.1975, 17202548 J.C.S. Perkin IMe( 1 IMe( 3 )+HO2C COZHI t( 6 1 1 MeMe(121i-- - -Me(13 IMe(911(I410(15)(16) 由 Michael 将 3,P-二氢-L-甲基异喹啉 (1) 添加到巴豆酸酐中 (2).用吡啶中的戊二酸酐加热3,4-二氢-l-甲基异喹啉(I)在100“C处,然后对氧化铝进行色谱法,得到1,6,7,1 lb-四氢-9,lO-二甲氧基-11 b-甲基苯并[a]喹嗪-4-酮的收率为1,6,7,1 lb-四氢-9,lO-二甲氧基-11 b-甲基苯并[a]喹嗪-4-酮(19)。质谱显示分子离子峰在m / e 273处,i.r.光谱(氯仿)在1625 cm-l处表现出碳化二基吸收。在n.m.r.谱中,在6 (CDC1,) 1.69 (s)处观察到一个C-甲基信号,在3.84和3.87处观察到两个0-甲基信号,在6.57和6.72处观察到两个芳香族质子信号(单峰),在5.75 (dt, J 3.4 and 10 Hz) and 6.18 (d,J 10 Hz)处观察到两个烯烃质子的共振。结构(19)得到了13C n.m.r.光谱(氘代氯仿)的进一步支持,该光谱显示了16个碳原子的信号,通过与14916917的模型进行比较,并基于非共振解耦光谱中的分裂模式进行分配:1 lb-Me在1976 254930.9,C(1)在30.3和/或34.9,C(2)在131.4,C(3)在119.4,C(4)在165.9,C(6)在30.3和/或34.9, C(7)在27.8,C(7a)在125.8,C(8)在110.8,C(9)和C(l0)在146.8,C(11)在107.9,C(l1a)在131.4,C(l1b)在59.6,以及两个O-Meat 55.4和55.0。化合物(19)可能是由戊二酸酐的亚甲基碳在二氢异喹啉(1)的C-1处亲核侵袭形成的,15随后得到的酸酐(18)环化并伴有脱羧反应EXPERIMENTAL1。 2-巴豆酰基-1,2,3,4-四氢-6,7-二甲氧基-I-亚甲基异喹啉(3),N-(2-乙酰Z-4,5-二甲氧基苯乙醚Z)克豆膦(4)和3,4,6,7-四氢-9,1O-二甲氧基-4-甲基Z-苯并[a]喹嗪-2-酮(5).-加入3,4-二氢-6,7-二甲氧基-L-甲基异喹啉(1)l1(1,5g)在吡啶(2ml)中的溶液,巴豆酸酐(2)(1.2g),并将所得混合物在水浴上加热2hunder氮。冷却后,加入水(20ml),并用苯萃取溶液。将提取物用水洗涤,干燥(Na,SO,),蒸发至红色糖浆(2.2g),在中性氧化铝(111级)上色谱。用苯洗脱得到乙酰胺(3),从正己烷重结晶为熔点,熔点为熔点125“,vmax(CHCl,)1655和1605 cm-1;6(CDCl,) 1.85 (3 H, d, J 6 Hz, Me), 2.83 (2 H, t, J 6.5 Hz,ArCH,), 3.86 (3 H, s, OMe), 3.90 (3 H, s, OMe), 4.03 (2 H,t, J 6.5 Hz, CH,*N), 4.87 和 5.57(各 1 H,每个 s,XH,)、6.25-7.20(2 H、m、2 x 烯烃 H)、6.56(1 H、s、5-H)和 7.09(1 H、s、8-H);m/e 273 (M+) (发现: C, 70.1;H,6.95;N,5.0。C,,H,,NO,需要 C,70.3;H,7.0;N,5.15%)。进一步用苯-甲醇(99 : 1 v / v)洗脱得到酰胺(4)(150mg,7%),从苯重结晶以获得针头,熔点146“,vmax(CHC1,)1655,16 E.Wenkert,B.Chauncy,K.G.Dava,A.R.Jeffcoat,F.M.Schell和H.P.Schenk,J。Amer. Chem. SOC., 1973, 95, 8427;E. Wenkert, J. S. Bindra, C.- J. Chang, D. W. Cochran, and F. 31.Schell, Accounts Chem. Res., 1974, 7, 46.1 625, and 1600 cm-1;G(CDC1,) 1.82 (3 H, dd, J 2 和 7 Hz,Me), 2.56 (3 H. s, Ac), 2.99 (2 H, t, J 6.5 Hz, ArCH,), 3.50 (2H, t, J 6.5 Hz, CH,*N), 3.88 (6 H, s, 2 x OMe), 5.75 (1 H, d,J 15 Hz, COCH=), 6.41 - 7.25 (1 H, m, COCH=CH), 6.73 (1H, s, 5-H) 和 7.14 (1 H, s, 8-H);rn/e 291 ( M f ) (发现: C,65.7;H,7.15;N,4.7。C16H,1N04需要C,65.95;H,7.25;N,4.8%)。进一步用苯甲醇(98 : 2 v/v)洗脱得到苯并[a]喹啉Zizine (5) (350 mg, 17.5%),由苯重结晶得到淡黄色针状物,熔点156-157“,vmx。(CHCl,) 1 605 和 1 580 cm-l;G(CDC1,) 1.32 (3 H, d, J 6 Hz, Me), 2.05-3.80 (7 H, m), 3.85(3H,s,OMe), 3.89(3H,s,OMe), 5.55(lH,s,l-H), 6.64(1H,s, 5-H), and 7.11 (1 H, s, 8-H);wz/e 273 (M+) (发现: C,70.2;H,6.9;N,5.05。C1,H1,NO,要求C,70.3;H,7.0;N,5.15%)。(9) .-3,4-二甲氧基苯乙胺的混合物 (7) (1.将8g)和3-甲基戊二酸酐(8)(1.5g)加热240“C,直到水的形成停止。冷却后,将混合物溶于氯仿中,然后用5%氢氧化钠水溶液和饱和氯化钠溶液洗涤,干燥(Na,SO,),并蒸发。所得固体在与冷苯研磨后,由苯-正己烷结晶,得到戊二酰亚胺 (9) (1.5 g, 52%) 作为鳞片,熔点为 123“ (lit.,I*116.5-118”), v,,,.(CHCl,) 1715 和 1665 cm-1;6(CDCl,)1.05(3H,d,J 6Hz,Me),3.83(3H,s,OMe),3.86(3H,s,OMe)和6.73(3H,s,3 x ArH).idone(10).-硼氢化钠(250mg)分小份加入到戊二酰亚胺(9)(250mg)在乙醇(25ml)中-10“C的搅拌溶液中。每隔4-3滴4~-盐酸(约15 min),搅拌均匀。通过在冷却的溶液中缓慢加入盐酸来分解过量的硼氢化钠,直到达到pH值3。然后将混合物在50“C下再搅拌45-60分钟,用乙醇Iic 1%氢氧化钾中和并蒸发。用氯仿萃取残留物,然后蒸发,得到酰胺(10)(200mg,91%)作为油,vmaZ(CHCl,)1 630 cm-1;6 (CDC1,) 0.83 (3 H, d, J 6 Hz, Me)、1.07 (3 H, t, J 7 Hz, CH,IMe)、4.13 (1 H, t, J 3 Hz, EtOCH-N) 和 6.62 (3 H, s, 3 x ArH),无需进一步纯化即可使用。1,2,3,6,7,1 lb-六氢-9,10-二甲氧基-2-乙基苯并 [a]-喹嗪-4-酮( 11).-将酰胺(10)(200mg)在含有甲苯-氟磺酸(70mg)的苯(50ml)中的溶液回流3小时。冷却后,用饱和碳酸氢钠水溶液和饱和氯化钠水溶液洗涤苯层,干燥(Na,SO,),蒸发,使产物(11)为差向异构体(160mg,94%)vmX(CHClJ 1620cm-l;8(CDC1,)1.11(3 H,m,Me),3.83(6 H,s,2 x OMe),4.40-5.15(2 H,m,6-和Ilb-H), 6.58 (1 H, s, ArH) 和 6.63 (1 H, s, ArH),无需进一步纯化即可使用.1,3,4,6,7,1 lba-六氢-9,10-二甲氧~y-2~-甲基基-2H-苯并[a]喹嗪 [(12) 的外消旋体] 及其 2a-甲基异构体 [(13) 的外消旋体] .-氢化锂 (15 mg) 在干燥的四氢呋喃 (20 rnl) 中的悬浮液, 化合物 (1 1) (100 mg) 在干四氢呋喃中的溶液7 R.H. Levin, J.-Y. Lallemand 和 JD Roberts, J .09.g.lS T. Kametani、T. Hayasaka、S.Takano 和 S. Akaboshi, J .N-(3,4-二甲氧基苯乙醚Z)-3-甲基祖塔里夫尼N-(3,4-二甲氧基苯乙醚Z)-6-乙氧基-4-甲基-2-氟醚-化学,1972,38,1983.Pharm.SOC.日本,1962,82,9562550 J.C.S.Perkin I(10ml)滴加,搅拌T室温度。再搅拌0.5小时后,将溶液重新通量3小时,然后通过缓慢加入40%氢氧化钠水溶液分解过量的氢化铝锂。将溶液蒸发得到用乙醚萃取的油。将提取物用饱和氯化钠水溶液洗涤,干燥(Na,SO,),蒸发以留下橙油(80mg),通过制备t.1.c进行净化。在硅胶[苯-乙乙酸酯-甲醇(5:5:2 v/v)]上,得到产物(12)(30mg,32%),作为油,VM9。(CHC1,) 2 800-2 700 和 1600 cm-l;G(CDC1,) 1.10 (3 H, d, J 6 Hz, Me), 3.80 (6 H,s, 2 x OMe), 6.53 (1 H, s, ArH) 和 6.62 (1 H, s, ArH) ;wz/e261 (M+) [盐酸盐形成的针,n1.p. 215-216“(来自乙醇醚)(发现:C,64.05;H,8.15;N, 4.6.C1,H24C1N02 需要 C, 64.5;H,8.1;N,4.7%)],和(13)(35mg,37%),作为油,vnmx。(CHC1,) 2 800-2 700 和 1 600cm-l;6 (CDC1,) 1.02 (3 H, d, J 5Hz, Me), 3.82 (6H,s, 2 xOMe), 6.55 (1 H, s, ArH) 和 6.68 (1 H, s, ArH);nz/e 261(M+) [盐酸盐形成的针,M.P. 195-198“(乙醇醚)(发现:C,63.45;H,8.35;N, 4.45.C,,H2,C1N02,0.25H,0 需要 C, 63.55;H,8.15;N,4.65y0)].5,6-二氢-9,1O-二甲氧基-4-wz乙基苯并呐]喹啉-2-酮 (15) .-(a) 化合物的氧化 (14).(i) 含钾钾。将化合物(14)(50mg),高锰酸钗(29mg)和丙酮(10ml)的混合物搅拌室温5小时。析出二氧化锰,溶液变为无色。将混合物通过Celite过滤并蒸发成粉末(45mg),该粉末由丙酮重结晶给二烯酮(15)(40mg,80%)作为针,m.p.262“,v,,,.(CHCl,) 1 630 和 1 610 cm-1;6 (CDC1,) 2.39 (3 H, s,Me), 2.98 (2 H, t, J 7 Hz, ArCH,), 3.89 (3 H, s, OMe), 3.91(3H, s, OMe), 4.02 (2H, t, J 7, CH,*N), 6.24 (1 H, d, J 2.5Hz, 1- 或 3-H), 6.72 (1 H, s, 8-H), 6.73 (1 H, d, J 2.5 Hz, 1-或 3-H), 和 7.17 (1 H, s, 11-H);wale 271 (MT) (发现: C,70.45;H,6.35;N, 5.1.C1,H1,NO, 需要 C, 70.85;H,6.3;N,5.15%)。将化合物(1,4)(100mg)和氧化钯(100mg)在二甲苯(10ml)中的悬浮液回流20小时。冷却后,将混合物用氧化钯过滤(ii)通过钙化石并蒸发得到粉末(80mg),该粉末由丙酮重结晶,得到(15)(70mg,70%)作为针,熔点262“,其光谱数据与上述化合物的光谱数据相同。(b) 化合物(5)与氧化钯脱氢。将化合物(5)(60mg)和氧化钯(80mg)在二甲苯(5ml)中的悬浮液回流24小时。冷却后,将混合物过滤过青石,蒸发得到黑油(50mg),经制备剂纯化。在硅胶[苯-乙酸乙酯-甲醇(5:5:2V/V)]上。RB 0.2 的一小部分得到化合物 (15) (15 mg,30%) 作为针头,熔点为 262“,其光谱数据与上述产品相同。1,6,7,1 lb-Tetmhydro-9,lO-dimethoxy-1 lb-methylben,zo[a]-qztinolizin-4-one (1 9) .-3,4-二氢-6,7-d;-甲氧基-1-硝基异喹啉(1)(200mg)和谷氨酰基酐(17)lg(1 10mg)在吡啶(2ml)中的溶液加热3小时。冷却后,在所得的红色溶液中加入水(5ml),然后用乙醚提取。提取液用饱和氯化钠水溶液洗涤,干燥(Na,SO,),蒸发得到anorange油(1 90mg),在中性氧化铝(111级)上进行色谱。用苯洗脱得到固体,固体由正己烷重结晶,得到产物(19)(150mg,56%)作为针,熔点115“,vmax。(CHCl,)1 625 cm-1;6 (CDCl,) 1.69 (3 H, s, Me), 2.36-3.43 (5 H, m,1-H2, 6-H, and 7-H,), 3.84 (3 H, s, OMe), 3.87 (3 H, s, OMe),4.93-5.25 (1 H, m, 6-H), 5.75 (1 H, dt, J 3.4 and 10 Hz,2-H), 6.18 (1 H, d, J 10 Hz, 3-H), 6.57 (1 H, s, ArH) 和 6.72 (1 H, s, ArH);m/e 273 (M+) (发现: C, 70.1;H,6.85;N,4.9。C,,H,,NO,需要 C,70.3;H,7.0;N,5.150,;)*感谢 M. Koizumi 博士、K. Kawamura 先生、C.Koyanagi 女士、K. Mushiake 女士、R. Kobayashi 女士、R.Suenaga 女士、E. Nagaoka 女士、XI 小姐。Tanno 和 H.Koizumi 小姐进行显微分析和光谱测量。[6/1323 Reccived, 7th July, 19761l9 W. H. Perkin, jun., and G. Tattersall, J. Chem. Soc., 1905,87, 364

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号