首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Biosynthetic studies on citreohybridones, metabolites of a hybrid strain KO 0031 derived fromPenicillium citreo-virideB. IFO 6200 and 4692
【24h】

Biosynthetic studies on citreohybridones, metabolites of a hybrid strain KO 0031 derived fromPenicillium citreo-virideB. IFO 6200 and 4692

机译:柠檬杂交酮的生物合成研究,柠檬杂交菌株KO 0031的代谢产物,来源于青霉菌柠檬绿化物B。IFO 6200 和 4692

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1994 135 Biosynthetic Studies on Citreohybridones, Metabolites of a Hybrid Strain KO 0031 Derived from Penici//ium citreo-viride B. IF0 6200 and 4692 Seiji Kosemura,a Hiroshi Miyata,e Shosuke Yarnamura,*Sa Kumyul Albone! and Thomas J. Simpson *A a Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan School of Chemistry, University of Bristol BS8 ITS, UK incorporation of '3C-labelled acetate, formate and ethyl 3,5-dimethylorsellinate into citreohybridones using a hybrid strain KO 0031 derived from Penicillium citreo-viride B. IF0 6200 and 4692 has establishedthat their biosynthesisproceeds via a mixed polyketide-terpenoid (meroterpenoid) pathway. The novel metabolites, anditomin 1,' austin 22 and terretonin citreohybridones A 8 and B 9,' isocitreohybridones A 10 and B 3, were isolated from Aspergillus variecolor, Aspergillus ustus, 11,6 citreohybriddiones A 12 and B 13,6 and citreohybridonol and Aspergillus terreus (NRRL 6278) respectively.Based on 14, from the mycelium of the hybrid strain KO 0031 derived stable isotope incorporation studies involving labelled acetate from Penicillium citreo-viride B. IF0 6200 and 4692. and methionine. it has been shown that these metabolites Interestingly, they display antifeedant and insecticidal activities against Plutella xylostella. Initial biogenetic analysis suggested I that these metabolites could be formed by successive methyl migration and skeletal rearrangement of a sesterterpenoid containing five isoprene units or alternatively from a degraded triterpenoid.However, we now report biosynthetic experiments on citreohybridonol 14 ' using sodium 1,2-'3C2acetate, sodium '3Cformate, and ethyl ~arboxy-6-'~C,-3,5-di-methylorsellinate, which indicate that this metabolite also is formed via a mixed polyketide-terpenoid (meroterpenoid) Anditomin 1 Austin 2 biosynthetic pathway (see Scheme 1). Results and Discussion Initial biosynthetic experiments on citreohybridones were carried out using sodium 1,2-' 3C2acetate and sodium'3Cformate. According to essentially the same procedure described the ethyl acetate extract of the culture medium was directly chromatographed on silica gel. Further separation and purification by repeated preparative TLC Terretonin 3 afforded citreohybridonol 14 (0.92).Citreohybridonol 14 exists as an equilibrium between two different ring D tautomers originate from a mixed polyketide-terpenoid (meroterpenoid) in both CDCl, as well as CD30D, which causes difficulties in biosynthetic path~ay.~The key step in their biosynthesis signal assignments in the 13C NMR spectrum. Therefore, 14 involves C-alkylation of the tetraketide-derived intermediate, was treated with acetic anhydride-pyridine to afford citreo-3,5-dimethylorsellinic acid 4, with farnesyl pyrophosphate, hybridone A 8 and the I3CNMR assignment (Table 1) is based giving 5 as shown in Scheme 1. This intermediate is then on complete 'H NMR decoupling experiments coupled with cyclized and undergoes oxidation and other modifications to 2D-INADEQUATEexperiments on 1,2-' 3C2acetate-labelled produce the above metabolite^.^ citreohybridone A 8.The average level of enrichment was Recently, we isolated seven new metabolites named estimated to be 12.7 based on the relative heights of the Table 1 3CNMR dataDfor the incorporation of 1,2-"C,acetate into citreohybridone A 8 Carbon 6 JIHz Carbon 6 JIHz Carbon 6 JIHz 1 20.89 11 123.13 41.5 21 19.23 2 22.12 36.0' 12 134.04 22 22.12 36.0' 3 75.78 36.4 13 59.88 37.6 23 178.74 49.0 4 34.52 35.3 14 69.23 57.0 24 26.47 5 55.35 33.2 15 169.45 82.0 25 22.12 36.0' 6 76.71 33.2 16 131.96 82.9 26 170.62 59.5 7 37.70 17 198.96 27 20.89 59.5 8 41.10 36.5 18 9.52 28 52.32 9 51.64 41.5 19 169.65 57.0 MeCO 164.91 10 43.70 49.0 20 17.31 36.6 MeCO 21.55 I3CNMR spectra were taken on a JEOL JNM-GX 400 NMR spectrometer.Relative to TMS in CDCl,. Overlapped with other satellites' signals. 136 J. CHEM. SOC. PERKIN TRANS. 1 1994 / COSCoA Me -C02Na OH 0 C02R HO HO 6 / 0 / 0 0 OH 0 00 OH Austin 2 Terretonin 3 Citreohybridones Me-C02Na Methionine0 Scheme 1 I I I 1 ~i"''"''',~,.-TI111.711111~m~-ml--m~p-m-~~, 169.7 169.6 169.5 169.4 169.3 169.2 169.1 169.0 PPm Fig. 1 100.4 MHz "C NMR spectrum of citreohybridone A labelled from ethyl carboxy-6-' 3C,-3,5-dimethylorsellinate J.CHEM. SOC. PERKIN TRANS. I 1994 coupling satellites and natural abundance signals.? No sig-nificant differences in enrichment levels between the farnesyl and orsellinate derived carbons were observed. The 3Cformate-labelled sample showed signals resulting from three highly enriched carbons (300) corresponding to C-18 (S 9.52), C-21 (S 19.23) and C-28 (S 52.32). The resulting labellingpattern of citreohybridone A is summarized in Scheme 1, and suggests that this metabolite is formed uia a mixed polyketide-terpenoid biosynthetic pathway with the same biosynthetic intermediate 7 proposed as a precursor of terretonin 3. Further evidence for this was provided from incorporation of 3C-labelled ethyl 3,5-dimethylorsellinate into citreohybridonol 14 which was converted into citreo-hybridone A 8 as above.The ~arboxy-6-'~C,1-3,5-dimethylorsellinate-labelled citreohybridone A 8 showed signals resulting from two highly enriched carbons (1 100) corresponding to C-15 (S 169.45, 2Jcc 3.9 Hz) and C-19 (S 169.65, 2Jcc 3.9 Hz) (see Fig. 1). The labelling pattern of citreohybridone A 8 is summarized in Scheme 2 and confirms the intact incorporation of 33-dimethylorsellinate. The pathway shown in Scheme 2 is consistent with the pathway proposed for the biosynthesis of terretonin 3.4sRing contraction of the tetracycliccarbocation 6 t Enrichments were calculated by dividing the total intensity of the coupling satellites by the intensity of the non-coupled, natural abundance resonance.No systematic variation of intensities was observed. 0 HO OR OR HO HO I I 602Me OH A II @OR'0 0 AcO'. , 0 Cb2Me0 . #8 OH Terretonin Ciireohybridones Scheme 2 21 d 24 R = Ac; Citreohybridone A 8 R = Ac; lsocitreohybridoneA 10 R = Me; Citreohybridone B 9 R = Me; lsocitreohybridoneB 11 0 . CitreohybriddioneA 12 Citreohybriddione6 13 Citreohybridond14 is common to both pathways with the subsequent alternative proton losses indicated in Scheme 2 producing the exocyclic methylene observed in terretonin or the endocyclic double bond in the citreohybridones. Thus the citreohybridones represent a further extension of the meroterpenoid pathway * of which andibenin 15, a co-metabolite of anditomin 1 in A.uariecolor, was the first representative. Interestingly, austin 2 has also been isolated from A. uariecolor. Metabolites related to austin have been isolated from Penicillium diuersum 4c and Emericella dentata,g and two unrelated metabolites which are almost certainly further products of the meroterpenoid path-way, fumigatonin 16 and paraherquonin 17 have been isolated from Aspergillus fumigatus and Penicillium paraherquei," respectively. The meroterpenoid pathway can now be seen to be relatively widespread in fungi. Andibenin 15 I --OAC 0 0 Fumigatonin 16 Paraherquoinin 17 J. CHEM.SOC. PERKIN TRANS. I 1994 Experimental Dimethyl 1,3-' 3C,malonate was obtained from Amersham International plc UK, ',C-labelled formate and acetate from ISOTEC inc., USA.Melting points were determined on a Mitamura Riken apparatus and uncorrected. Optical rotations were measured with a JASCO DIP-360 polarimeter and are recorded in units of lo-' deg cm2 g- '. IR spectra were recorded on a JASCO A-202 spectrophotometer. 'H NMR and 13C NMR spectra were recorded on a JEOL JNM-GX 400 NMR spectrometer in C2H4methanol or 2Hlchloroform; J values are recorded in Hz. Thin layer chromatography was performed using preparative (20 x 20 cm) glass plates coated with a 0.5 mm layer of silica gel (Merck Art. 5744 Kieselgel 60 PF254. UV light of wavelength 254 nm was used to visualize chromatograms. Incorporation of Sodium 1,2-' 3C2Acetate and Sodium ',C Formate into Citreohybridono1.-Polished rice (540 g) in deionized water (1.4 dm3) including sodium 1,2-' ,C,acetate (1 g) or sodium ',Cformate (1 g) was cooked using an electric rice cooker (100 "C, 20 min), and then transferred into an Erlenmeyer flask (3 dm3 x 5).This was sterilised (121 "C, 20 min at 2.1 atm) and then inoculated with a suspension of mycelium of the hybrid strain KO 0031 in sterilised water and incubated at room temperature for 30 days. The culture was extracted with acetone and then ethyl acetate. The combined extracts were partitioned between ethyl acetate and water. The ethyl acetate extract (1 0.0 g) was directly chromatographed on silica gel (40 g, silica gel 60 K070, 70-230 mesh, Katayama Chemical). After elution of higher fatty acids and their esters with benzenes, further elution with benzene ethyl acetate (3 :1) afforded a pale yellow oil (1 80 mg), which was further separated by repeated preparative TLC (Kieselgel PF254) using acetone- CHCl, (1 :20 -30), acetone-hexane (1 :1.5 -2) and then ethyl acetate-benzene (1 :3) to give citreohybridonol 14 as a colourless oil (92.2 mg, 0.92): a;' +67.3 (c 0.066, CHCI,); (M+, 500.240; C,,H,,O, requires M, 500.241); v,,,(film)/cm~' 3200, 1770, 1740 and 1620; major tautomer (60): G(CDC1,) ethyl acetate (3: 1) afforded a pale yellow oil (560 mg), which was further separated by repeated preparative TLC (Kieselgel PF254) using acetone-CHCl, (1 :20-30), acetone- hexane (1 :1.5-2) and then ethyl acetate-benzene (1 :3) to give citreohybridonol in 1.5yield.Acetylation of Citreohybridonol 14.-A solution of com-pound 14 (74.5 mg) in acetic anhydride (10 cm3)-pyridine (20 cm3) was stirred at 0 "C for 16 h after which work-up gave an oil which was subjected to preparative TLC using benzene- ethyl acetate (5:2) to afford citreohybridone A (54) and isocitreohybridone A (1 l), respectively. Citrephybridone A 8 formed colourless prisms, m.p. 261.5-263 "C in a sealed tube (from benzene-hexane); ah9 -25.4 (c 1.00, CHCl,) (M+, 542.249. C,,H3,09 requires M, 542.251); v,,,(film)/cm~' 1775, 1740, 1715, 1660 and 1240;G,(CDCl,) 0.90 (3 H, s, 25-H,), 0.93 (3 H, s, 24-H,), 1.27 (3 H, s, 2O-H,), 1.14 (3 H, s, DH,), 1.42 l H,ddd,J13.4, 13.4,6.2,I-Ha(ax),1.63(3H,s,18-H3),1.71 l H,s,SHa(ax), 1.65-1.82(2H,m,2-H,), 1.75 3H,dd, J2.4, 1.5, 21-HP (eq), 2.16 (1 H, m, 1-H), 2.16 (3 H, s, 3-OAc), 2.29 l H,d, J 14.7,7-Ha(ax), 2.31 (3 H, s, 15-OAc), 2.51 l H, dq, J 2.4,2.4,9-Ha(ax),2.741 H,dd, J14.7,4.3,7-HP(eq), 3.66(3 H, s, 14-CO,Me), 4.65 (1 H, dd, J3.4, 1.8, 3-H), 4.71 (1 H, d, J 4.3, 6-H) and 5.68 (1 H, s, 11-H); S,(CDCl,) 9.52 (9, C-18), 17.31 (9, C-20), 19.23 (9, C-21), 20.89 (t and q, C-21 and C-27), 21.44 (9, C-30), 22.12 (t, q and q, C-2, C-22 and C-25), 26.47 (9, C-24), 34.52 (4, C-4), 37.70 (t, C-7), 41.10 (s, C-8), 43.70 (s, C-lo), 51.54 (d, C-9), 52.32 (9, C-28), 55.35 (d, C(5), 59.88 (s, C-13), 69.23 (s, C-14), 75.68 (d, C-3), 76.71 (d, C-6), 123.13 (d, C- 1 I), 131.96 (s, C-16), 134.0 (s, C-12), 164.91 (s, C-29), 169.45 (s, C-15), 169.65 (s, C-19), 170.62 (s, C-26), 178.74 (s, C-23) and 198.96 (s, C- 17).Isocitreohybridone A 10 was a colourless oil: ah9., +22.6 (c 1.O, CHCl,) (M', 482.228. C30H3809-CH3C02H requires 482.230); v,,,(film)/cm-' 1770, 1740, 171 0, 1670, 1245, 1225, 1175 and 1 135;6(C,D,) 0.73 (3 H, S, 25-H,), 0.76 (3 H, S, 24-H,), 1.19(1 H, ddd, J 13.4, 13.4,6.2, 1-Ha), 1.25 (3 H, S, 2O-H,), 1.58 (3 H, S, 17-OAc), 1.62 (3 H, S, 18-H3), 1.65 (3 H, S, 3-OAc), 1.67 5.67(1H,brs,ll-H),4.72(1H,d,J3.9,6-Ha),4.65(1H,dd,J(2 H, m, 2-H,), 1.69 (3 H, dd, J2.4, 1.6, Zl-H,), 1.80 (3 H, s, 2.5, 3-HP), 3.67 (3 H, S, B-H,), 3.63 (1 H, d, J 14.2, 7-Ha), 2.51 (1 H, dd, J 14.2,4.4,7-Hp), 2.02 (3 H, S, 3-OAC), I .87 (3 H, s, 2l-H,), 1.33 (3 H, s), 1.32 (3 H, s), 0.94 (3 H, s) and 0.89 (3 H, s); other signals (S 2.25-1.25, 9 H) are overlapped one with another; minor tautomer (40): G(CDC1,) 5.83 (1 H, br s, 11-H), 4.78 (1 H, d, J3.9,6-Ha), 4.68 (1 H, dd, J2.5,2.5,3-Hp), 3.61 (3 H, S, Z-H,), 2.93 (1 H, d, J 14.2, 7-Ha), 2.75 (I H, dd, J 14.2,4.4, 7-Hp), 2.40 (1 H, dd, J2.4,9-H), 2.07 (3 H, S, 3-OAc), 1.87 (3 H, s), 1.43 (3 H, s), 1.25 (3 H, s), 0.97 (3 H, s) and 0.91 (3 H, s); other signals (S 2.25-1.25, 8 H) are overlapped one with another. Incorporation of Ethyl 3,5-Dimethylorsellinate into Citreo- hybridono1.-Ethyl ~arboxy-6-'~C,-3,5-dimethylorsellinate (96.0 atom 13C; 90.8 mg) was dissolved in hot distilled water (80 cm3) containing 'Tween 80' detergent (8 cm3).This sterilised solution was distributed evenly, by injection through the mycelial mat, into 4-day old stationary cultures of the hybrid strain KO 0031 (360 g of cooked rice in each of four 3-dm-, Erlenmeyer flasks). The cultures were then incubated for a further 31 days at 25 "C. The acetone extract was concentrated under reduced pres- sure to an acetone-free aqueous solution (1 dm3) and then extracted with ethyl acetate (8 dm3). The combined extracts (dark brown syrup, 4.9 g) were partitioned between ethyl acetate and water. The ethyl acetate extract (4.9 g) was directly chromatographed on silica gel (60 g, silica gel 60 K070, 70-230 mesh Katayama Chemical). After elution of higher fatty acids and their esters with benzene, further elution with benzene- 22-H,), 1.99(1 H,s, 5-H), 2.26(1 H,ddd, J 14.3,4.8,2.0, 1-Hp), 2.39 (1 H, dq, J2.4, 2.4, 9-H), 2.77 (1 H, dd, J 14.3, 4.4, 7-H/3), 3.25(3H,s,19-OMe),3.70(1H,d,J14.4,7-Ha),4.46(1H,d,J 4.4, 6-H), 4.69 (I H, dd, J3.3, 1.8, 3-H) and 5.91 (1 H, s, 1 I-H); G(CDCl,)7.91 (q), 17.61 (q),20.67(q),20.98(t),21.04(q),21.13 (q), 22.07 (t), 22.33 (q), 25.23 (q), 26.27 (q), 34.30 (s), 36.51 (t), 43.61 (s), 43.96 (s), 51.54(d), 51.72 (q), 52.74(s), 54.49 (d), 72.39 (s), 76.05 (d), 77.67 (d), 124.97 (d), 125.82 (s), 137.00(s), 164.96 (s), 169.19(s), 170.17(s), 174.18(s), 179.05 (s) and 203.90 (s).Ethyl 2,7-' 3C2-2,4-Dihydroxy-3,5,6-trimethylbenzoate (33- Dimethylorsellinate).-The '3C2-labelled 3,5-dimethylorsel- hate was prepared as previously described ' from diethyl 1,3-3C,malonate (1 .O g, 6.17 mmol) and 4-methylhex-4-en-3-one (730 mg, 6.52 mmol).The crude brown oily product was puri- fied by flash chromatography eluting with a 3-7 ethyl acetate in light petroleum (b.p. 40-60 "C) to give a pale yellow solid (230 mg, I .02 mmol, 16.5); dH(CDC13) 1.40 (3 H, t, J 7, CH,CH,), 2.11 (3 H, s, S-ArCH,), 2.16 (3 H, s, 5-ArCH3), 2.42 (3 H, s, 2-ArCH3), 4.39 2 H, q (d), J7 ('JCH3), CH,CH,, 5.30 (1 H, br s, 4-ArOH) and 1 1.56 (1 H, s (d) *JCH4, 2 ArOH; Sc(CDCl,), 7.9 (2 ArCH,), 11.8 (5 ArCH,), 14.2(3 ArCH,), 18.7 (CH,CH3), 61.2 (CHZCH,), 106.1 (C-1), 107.2 (C-2), 115.0 (C-3), 137.0 (C- 5), 159.4 (C-4), 159.5 (C-6) and 172.2 (CO,C,H,); m/z 226 (M+, 30), 180 (91), 152 (lo), 151 (100) and 120 (11) References 1 T.J. Simpson and M. D. Walkinshaw, J. Chem. Soc., Chem. Cornrnun., 1981,914. J. CHEM. SOC. PERKIN TRANS. 1 1994 2 K. K. Chexal, J. P. Springer, J. Clardy, R. J. Cole, J. W. Kirksey, J. W. Dorner, H. G. Cutler and W. J. Strawter, J. Am. Chem. SOC., 1976,98,6748. 3 J. P. Springer, J. W. Dorner, R. J. Cole and R. H. Cox, J. Org. Chem., 1979,44,4852. 4 (a)J. S. E. Holker and T. J. Simpson, J. Chem. SOC.,Chem. Commun., 1978, 626; (b) C. R. McIntyre, F. E. Scott, T. J. Simpson, L. A. Trimble and J. C. Vederas, J. Chem. SOC.,Chem. Commun., 1986, 502; (c)C. R. McIntyre, T. J. Simpson, D. J. Stenzel, A. J. Bartlett, E. O’Brien and J. S. E. Holker, J.Chem. SOC.,Chem. Commun., 1982, 78 1; (d) T. J. Simpson, Tetrahedron Lett. , 1981, 22, 3785; (e) S. A. Ahmed, F. E. Scott, D. J. Stenzel and T. J. Simpson, J. Chem. Soc., Perkin Trans. I, 1989, 807; (f)C. R. McIntyre, F. E. Scott, T. J. Simpson, L. A. Trimble and J. C. Vederas, Tetrahedron, 1989, 45, 2307. 5 S. Kosemura, K. Matsunaga, S. Yamamura, M. Kubota and S. Ohba, Tetrahedron Lett., 1991,32, 3543. 6 S. Kosemura, K. Matsunaga and S. Yamamura, Chemistry Lett., 1991, 1811. 7 S. Kosemura, H. Miyata, K. Matsunaga and S. Yamamura, Tetrahedron Lett. ,1992,33,3883. 8 T. J. Simpson, Chem. SOC.Rev., 1987,16, 123. 9 Y. Maebayashi, E. Okuyama, M. Yamasaki and Y. Katsube, Chem. Pharm. Bull., 1982,30, 191 1. 10 E. Okuyama, M. Yamasaki andY. Katsube, Tetrahedron Lett., 1984, 25, 8233. 11 E. Okuyama, M. Yamasaki, K. Kobayashi and T. Sakurai, Tetrahedron Lett., 1983,24, i113. 12 A. J. Bartlett, J. S. E. Holker E. O’Brien and T. J. Simpson, J. Chem. Soc., Perkin Trans. I, 1981, 198. Paper 3/03094F Received 1st June 1993 Accepted 28th September 1993
机译:J. CHEM. SOC. PERKIN TRANS. 1 1994 135 枸橼杂交素的生物合成研究,杂交菌株的代谢物 KO 0031 源自 Penici//ium citreo-viride B. IF0 6200 和 4692 Seiji Kosemura,a Hiroshi Miyata,e Shosuke Yarnamura,*Sa Kumyul Albone!和 Thomas J. Simpson *A A 庆应义塾大学科学技术学院化学系,日吉,横滨 223,日本布里斯托尔大学化学学院 BS8 ITS,英国使用源自柠檬青霉 B 的杂交菌株 KO 0031 将 '3C 标记的乙酸酯、甲酸酯和 3,5-二甲基乙二醇酸乙酯掺入柠檬杂交酮中。 IF0 6200 和 4692 已经确定它们的生物合成通过混合聚酮-萜类化合物(类甲萜类化合物)途径进行。从曲霉(Aspergillus variecolor)、牛曲霉(Aspergillus ustus)、11,6、11,6、柠檬杂交二酮A12和B 13,6以及柠檬杂交醇和天曲霉(Aspergillus terreus)(NRRL 6278)中分离得到新的代谢产物,即anditomin 1'austin 22和terretonin citreohybridones A 8和B 9、异枸杞杂交素A 10和B 3。基于14,从杂交菌株KO 0031的菌丝体衍生的稳定同位素掺入研究,涉及来自柠檬绿青霉B.IF0 6200和4692的标记乙酸盐。和蛋氨酸。研究表明,这些代谢物有趣的是,它们对木霉菌具有抗摄食和杀虫活性。最初的生物遗传学分析表明,这些代谢物可以通过含有五个异戊二烯单元的酯萜类化合物的连续甲基迁移和骨骼重排形成,也可以由降解的三萜类化合物形成。然而,我们现在报道了使用[1,2-'3C2]乙酸钠、['3C]甲酸钠和乙基[~arboxy-6-'~C,]-3,5-二甲基乙二醇酯对柠檬糖杂交醇14'的生物合成实验,这表明该代谢物也是通过混合聚酮-萜类化合物(meroterpenoid)Anditomin 1 Austin 2生物合成途径形成的(见方案1)。结果与讨论 使用[1,2-' 3C2]乙酸钠和['3C]甲酸钠对柠檬杂交酮进行了初步的生物合成实验。根据所描述的基本相同的方法,将培养基的乙酸乙酯提取物直接在硅胶上色谱。通过重复制备TLC小黄素3进一步分离纯化得到柠檬糖杂交醇14(0.92%)。柠檬糖杂交醇14作为两种不同环D互变异构体之间的平衡而存在,这些互变异构体起源于CDCl和CD30D中的混合聚酮-萜类化合物(meroterpenoid),这在生物合成路径上造成困难~ay.~它们在13C NMR谱中生物合成信号分配的关键步骤。因此,涉及C-烷基化四酮酯衍生的中间体14,用乙酸酐-吡啶处理得到柠檬酰-3,5-二甲基乙醇酸4,用法呢基焦磷酸酯、杂交酮A 8和I3CNMR分配(表1)基于方案5,如方案1所示。然后,该中间体进行完整的'H NMR解偶联实验,并结合环化并进行氧化和其他修饰以2D-INADEQUATE对[1,2-'3C2]乙酸盐标记的实验产生上述代谢物^.^ citreohybridone A 8.平均富集水平为 最近,我们分离出7种新的代谢物,根据表1 3CNMR数据D的相对高度估计为12.7%,用于掺入[1,2-“C,]乙酸酯转化为柠檬酸杂交酮 A 8 碳 6 JIHz 碳 6 JIHz 碳 6 JIHz 1 20.89 11 123.13 41.5 21 19.23 2 22.12 36.0' 12 134.04 22 22.12 36.0' 3 75.78 36.4 13 59.88 37.6 23 178.74 49.0 4 34.52 35.3 14 69.23 57.0 24 26.47 5 55.35 33.2 15 169.45 82.0 25 22.12 36.0' 6 76.71 33.2 16 131.96 82.9 26 170.62 59.5 7 37.70 17 198.96 27 20.89 59.5 8 41.10 36.5 189.52 28 52.32 9 51.64 41.5 19 169.65 57.0 MeCO 164.91 10 43.70 49.0 20 17.31 36.6 MeCO 21.55 I3CNMR谱图在JEOL JNM-GX 400 NMR波谱仪上采集。相对于 CDCl 中的 TMS,。与其他卫星的信号重叠。136 J. CHEM. SOC. PERKIN TRANS.1 1994 / COSCoA Me -C02Na OH 0 C02R HO HO 6 / 0 / 0 0 OH 0 00 OH 奥斯汀 2 蒲草素 3 柠檬杂交酮 Me-C02Na 蛋氨酸0 方案 1 I I I 1 ~i“''',~,.-TI111.711111~m~-ml--m~p-m-~~, 169.7 169.6 169.5 169.4 169.3 169.2 169.1 169.0 PPm 图1 100.4 MHz”C 由乙基[羧基-6-'3C标记的柠檬酸杂交酮A的核磁共振谱图,]-3,5-二甲基乙二醇酸酯 J.CHEM. SOC. PERKIN TRANS.I 1994 耦合卫星和自然丰度信号。?未观察到法呢基和奥塞利酯衍生碳之间的富集水平存在显著差异。[3C]甲酸盐标记的样品显示了由三种高富集碳(300%)产生的信号,分别对应于C-18(S 9.52),C-21(S 19.23)和C-28(S 52.32)。方案 1 总结了由此产生的柠檬杂交酮 A 的标记模式,并表明该代谢物形成 uia 一种混合的聚酮-萜类生物合成途径,具有相同的生物合成中间体 7,被提议作为 terretonin 3 的前体。将 3C 标记的 3,5-二甲基乙二醇酯掺入柠檬烯杂交醇 14 中提供了进一步的证据,柠檬烯杂交醇 14 被转化为柠檬杂交酮 A 8,如上所述。[~arboxy-6-'~C,1-3,5-dimethylorsellinate-labelled citreohybridone A 8 显示了对应于 C-15 (S 169.45, 2Jcc 3.9 Hz) 和 C-19 (S 169.65, 2Jcc 3.9 Hz) 的两个高度富集的碳 (1 100%) 产生的信号(见图 1)。方案 2 总结了柠檬杂交酮 A 8 的标记模式,并确认了 33-二甲基乙醇酸酯的完整掺入。方案 2 中所示的途径与为小地黄素 3.4s 生物合成提出的途径一致四环碳正离子的环收缩 6 t % 富集量是通过将耦合卫星的总强度除以非耦合的自然丰度共振的强度来计算的。没有观察到强度的系统变化。0 HO OR OR HO HO I I &602Me OH A II @OR'0 0 AcO'., 0 Cb2Me0 . #8 OH Terretonin Ciireohybridones 方案 2 21 d 24 R = Ac;柠檬杂交酮 A 8 R = Ac;lsocitreohybridoneA 10 R = Me;柠檬杂交酮 B 9 R = Me;lsocitreohybridoneB 11 0 .柠檬杂交二酮A 12 柠檬杂交二酮6 13 柠檬杂交二酮14 在两种途径中都是共同的,随后的替代质子损失在方案 2 中指示,产生在特雷色胺中观察到的外环亚甲基或柠檬糖杂交酮中的内环双键。因此,柠檬杂交酮代表了类甲萜途径的进一步延伸*,其中 A.uariecolor 中 anditomin 1 的共代谢产物 andibenin 15 是第一个代表。有趣的是,austin 2 也已从 A. uariecolor 中分离出来。已从青霉 diuersum 4c 和 Emericella dentata,g 中分离出与奥斯汀相关的代谢物,两种不相关的代谢物几乎可以肯定是类鼻曲霉途径的进一步产物,烟曲霉素 16 和 paraherquonin 17 分别从烟曲霉和副贺曲霉中分离出来。现在可以看出类甲萜类通路在真菌中相对广泛。Andibenin 15 I --OAC 0 0 Fumigatonin 16 Paraherquoinin 17 J. CHEM.SOC. PERKIN TRANS.I 1994 实验 [1,3-' 3C,]丙二酸二甲酯购自英国阿默舍姆国际公司,',C-标记的甲酸酯和乙酸盐,来自美国 ISOTEC 公司。熔点是在Mitamura Riken仪器上测定的,未经校正。用 JASCO DIP-360 旋光仪测量旋光度,并以 lo-' deg cm2 g- ' 的单位记录。红外光谱记录在JASCO A-202分光光度计上。'H NMR和13C NMR谱图在JEOL JNM-GX 400 NMR波谱仪上记录在C2H4]甲醇或[2Hl]氯仿中;J值以Hz为单位记录。 使用涂有0.5mm硅胶层的制备(20 x 20 cm)玻璃板进行薄层色谱(Merck Art.5744 Kieselgel 60 PF254。使用波长为 254 nm 的紫外光对色谱图进行可视化。将[1,2-' 3C2]乙酸钠和[',C]甲酸钠掺入去离子水(1.4 dm3)包括[1,2-',C,]乙酸钠(1g)或[',C]甲酸钠(1g)使用电饭煲(100“C,20分钟)煮熟,然后转移到锥形瓶(3 dm3 x 5)中。将其灭菌(121“C,2.1个大气压下20分钟),然后用杂交菌株KO 0031的菌丝体悬浮液接种在灭菌水中,并在室温下孵育30天。用丙酮和乙酸乙酯提取培养物。将合并的提取物在乙酸乙酯和水之间分配。将乙酸乙酯提取物(1 0.0g)直接在硅胶(40g,硅胶60 K070,70-230目,片山化学)上色谱。在用苯洗脱高级脂肪酸及其酯类后,进一步用苯乙酸乙酯(3 ∶1)洗脱得到淡黄色油(1 80 mg),通过重复制备TLC(Kieselgel PF254)进一步分离,使用丙酮-CHCl,(1:20-30),丙酮-己烷(1:1.5-2),然后乙酸乙酯-苯(1:3),得到柠檬烯杂交醇14,作为无色油(92.2mg, 0.92%): a;' +67.3 (c 0.066, CHCI,);(M+,500.240;C,,H,,O,需要 M,500.241);v,,,(胶片)/cm~' 3200、1770、1740 和 1620;主要互变异构体(60%):G(CDC1,)乙酸乙酯(3:1)得到淡黄色油(560mg),使用丙酮-CHCl(1:20-30)、丙酮-己烷(1:1.5-2)和乙酸乙酯-苯(1:3)通过重复制备TLC(硅溶胶PF254)进一步分离,得到产率为1.5%的柠檬糖杂交醇。将柠檬糖杂交醇14.-A在乙酸酐(10cm3)-吡啶(20cm3)中的乙酰化14(74.5mg)溶液在0“C下搅拌16小时,然后进行检查,得到一种油,该油使用苯 - 乙酸乙酯(5:2)进行制备TLC,分别得到柠檬杂交酮A(54%)和异柠檬杂交酮A(1l%)。柑二酚A8形成无色棱柱,m.p.261.5-263“C在密封管中(来自苯己烷);ah9 -25.4 (c 1.00, CHCl,) (M+, 542.249.C,,H3,09 需要 M, 542.251);v,,,(胶片)/cm~' 1775、1740、1715、1660 和 1240;G,(CDCl,) 0.90 (3 H, s, 25-H,), 0.93 (3 H, s, 24-H,), 1.27 (3 H, s, 2O-H,), 1.14 (3 H, s, DH,), 1.42 [l H,ddd,J13.4, 13.4,6.2,I-Ha(ax)],1.63(3H,s,18-H3),1.71 [l H,s,SHa(ax)], 1.65-1.82(2H,m,2-H,), 1.75 [3H,dd, J2.4, 1.5, 21-HP (eq)], 2.16 (1 H, m, 1-H), 2.16 (3 H, s, 3-OAc), 2.29 [l H,d, J 14.7,7-Ha(ax)], 2.31 (3 H, s, 15-OAc), 2.51 [l H, dq, J 2.4,2.4,9-Ha(ax)],2.74[1 H,dd, J14.7,4.3,7-HP(eq)], 3.66(3 H, s, 14-CO,Me), 4.65 (1 H, dd, J3.4, 1.8, 3-H), 4.71 (1 H, d, J 4.3, 6-H) 和 5.68 (1 H, s, 11-H);S,(CDCl,) 9.52 (9, C-18), 17.31 (9, C-20), 19.23 (9, C-21), 20.89 (t 和 q, C-21 和 C-27), 21.44 (9, C-30), 22.12 (t, q 和 q, C-2, C-22 和 C-25), 26.47 (9, C-24), 34.52 (4, C-4), 37.70 (t, C-7), 41.10 (s, C-8), 43.70 (s, C-lo), 51.54 (d, C-9), 52.32 (9, C-28), 55.35 (d, C(5), 59.88 (s, C-13)、69.23(s、C-14)、75.68(d、C-3)、76.71(d、C-6)、123.13(d、C-1 I)、131.96(s、C-16)、134.0(s、C-12)、164.91(s、C-29)、169。45(s,C-15)、169.65(s,C-19)、170.62(s,C-26)、178.74(s,C-23)和198.96(s,C-17)。异抡杂交酮A 10为无色油:ah9.,+22.6(c 1.O,CHCl,)(M',482.228。C30H3809-CH3C02H 需要 482.230);v,,,(胶片)/cm-' 1770、1740、171 0、1670、1245、1225、1175 和 1 135;6(C,D,) 0.73 (3 H, S, 25-H,), 0.76 (3 H, S, 24-H,), 1.19(1 H, ddd, J 13.4, 13.4,6.2, 1-Ha), 1.25 (3 H, S, 2O-H,), 1.58 (3 H, S, 17-OAc), 1.62 (3 H, S, 18-H3), 1.65 (3 H, S, 3-OAc), 1.67 5.67(1H,brs,ll-H),4.72(1H,d,J3.9,6-Ha),4.65(1H,dd,J(2 H,m,2-H,),1.69(3 H,dd,J2.4,1.6,Zl-H,),1.80(3 H,s,2.5,3-HP),3.67(3 H,S,B-H,),3.63(1 H,d,J 14.2,7-Ha),2.51(1 H,dd,J 14.2,4.4,7-Hp),2.02(3 H,S,3-OAC),I .87(3 H,s, 2l-H,)、1.33 (3 H, s)、1.32 (3 H, s)、0.94 (3 H, s) 和 0.89 (3 H, s);其他信号(S 2.25-1.25,9 H)相互重叠;次要互变异构体 (40%): G(CDC1,) 5.83 (1 H, br s, 11-H), 4.78 (1 H, d, J3.9,6-Ha), 4.68 (1 H, dd, J2.5,2.5,3-Hp), 3.61 (3 H, S, Z-H,), 2.93 (1 H, d, J 14.2, 7-Ha), 2.75 (I H, dd, J 14.2,4.4, 7-Hp), 2.40 (1 H, dd, J2.4,9-H), 2.07 (3 H, S, 3-OAc)、1.87 (3 H, s)、1.43 (3 H, s)、1.25 (3 H, s)、0.97 (3 H, s) 和 0.91 (3 H, s);其他信号(S 2.25-1.25,8 H)彼此重叠。将3,5-二甲基乙二醇酸乙酯掺入柠檬烯杂交1.-乙基[~羰基-6-'~C,]-3,5-二甲基乙醇酯(96.0原子%13C;90.8mg)中溶解在含有“吐温80”洗涤剂(8 cm3)的热蒸馏水(80 cm3)中。通过菌丝垫注射,将该灭菌溶液均匀分布到杂交菌株KO 0031的4天龄固定培养物中(4个3-dm-锥形瓶中各有360g煮熟的米饭)。然后将培养物在 25“C 下再孵育 31 天。将丙酮提取物在还原下浓缩至不含丙酮的水溶液(1 dm3),然后用乙酸乙酯(8 dm3)提取。将合并的提取物(深棕色糖浆,4.9g)分配在乙酸乙酯和水之间。将乙酸乙酯提取物(4.9g)直接在硅胶(60g,硅胶60 K070,片山化学70-230目)上色谱。用苯洗脱高级脂肪酸及其酯后,进一步用苯洗脱-22-H,)、1.99(1 H,s,5-H)、2.26(1 H,ddd,J 14.3,4.8,2.0,1-Hp)、2.39(1 H,dq、J2.4、2.4、9-H)、2.77(1 H,dd,J 14.3、4.4、7-H/3)、3.25(3H,s,19-OMe)、3.70(1H、d,J14.4,7-ha)、4.46(1H,d,J 4.4、6-H)、4.69(I H、dd、J3.3、1.8、3-H)和5.91(1 H、s、1 I-H);G(CDCl,)7.91 (q), 17.61 (q),20.67(q)、20.98(t)、21.04(q)、21.13 (q)、22.07 (t)、22.33 (q)、25.23 (q)、26.27 (q)、34.30 (s)、36.51 (t)、43.61 (s)、43.96 (s)、51.54(d)、51.72 (q)、52.74(s)、54.49 (d)、72.39 (s)、76.05 (d)、77.67 (d)、124.97 (d)、125.82 (s)、137.00(s)、164.96 (s)、169.19(s)、170.17(s)、174.18(s)、179.05 (s) 和 203.90 (s)。[2,7-' 3C2]-2,4-二羟基-3,5,6-三甲基苯甲酸乙酯(33-二甲基乙二醇酸乙酯)。-如前所述,由[1,3-3C,]丙二酸二乙酯(1 .O g,6.17 mmol)和 4-甲基己-4-烯-3-酮(730 mg,6.52 mmol)。粗褐色油状产物用3-7%乙酸乙酯在轻质石油(b.p.40-60“C)中洗脱,得到淡黄色固体(230mg,I .02 mmol,16.5%);dH(CDC13) 1.40 (3 H, t, J 7, CH,CH,), 2.11 (3 H, s, S-ArCH,), 2.16 (3 H, s, 5-ArCH3), 2.42 (3 H, s, 2-ArCH3), 4.39 [2 H, q (d), J7 ('JCH3), CH,CH,], 5.30 (1 H, br s, 4-ArOH) 和 1 1.56 (1 H, s (d) *JCH4, 2 ArOH];Sc(CDCl,)、7.9 (2 ArCH)、11.8 (5 ArCH)、14.2(3 ArCH)、18.7 (CH,CH3)、61.2 (CHZCH)、106.1 (C-1)、107.2 (C-2)、115.0 (C-3)、137.0 (C-5)、159.4 (C-4)、159.5 (C-6) 和 172.2 (CO、C、H);m/z 226 (M+, 30%), 180 (91), 152 (lo), 151 (100) and 120 (11) 参考文献 1 T.J. Simpson and M. D. Walkinshaw, J. Chem. Soc., Chem. Cornrnun., 1981,914.J. CHEM. SOC. PERKIN TRANS. 1 1994 2 K. K. Chexal, J. P. Springer, J. Clardy, R. J. Cole, J. W. Kirksey, J. W. Dorner, H. G. Cutler and W. J. Strawter, J. Am. Chem. SOC., 1976,98,6748.3 J. P. Springer, J. W. Dorner, R. J. Cole 和 R. H. Cox, J. Org. Chem., 1979,44,4852.4 (a)J. S. E. Holker 和 T. J. Simpson, J. Chem. SOC.,Chem. Commun., 1978, 626;(b) C. R. McIntyre, F. E. Scott, T. J. Simpson, L. A. Trimble and J. C. Vederas, J. Chem. SOC.,Chem. Commun., 1986, 502;(c)C.R.麦金太尔、T.J.辛普森、D.J.斯坦泽尔、A.J.巴特利特、E.奥布莱恩和J.S.E.Holker,J.化学 SOC.,化学通讯, 1982, 78 1;(d) T. J. Simpson, Tetrahedron Lett. , 1981, 22, 3785;(e) S. A. Ahmed, F. E. Scott, D. J. Stenzel and T. J. Simpson, J. Chem. Soc., Perkin Trans.I,1989年,807;(f)C.R.McIntyre、F.E.Scott、T.J.Simpson、L.A.Trimble和J.C.Vederas,《四面体》,1989年,第45页,第2307页。5 S. Kosemura, K. Matsunaga, S. Yamamura, M. Kubota and S. Ohba, Tetrahedron Lett., 1991,32, 3543.6 S. Kosemura、K. Matsunaga 和 S. Yamamura,Chemistry Lett.,1991 年,1811 年。7 S. Kosemura, H. Miyata, K. Matsunaga and S. Yamamura, Tetrahedron Lett. ,1992,33,3883.8 T. J. Simpson, Chem. SOC.Rev., 1987,16, 123.9 Y. Maebayashi, E. Okuyama, M. Yamasaki and Y. Katsube, Chem. Pharm. Bull., 1982,30, 191 1.10 E. Okuyama, M. Yamasaki 和 Y.Katsube, Tetrahedron Lett., 1984, 25, 8233.11 E. Okuyama, M. Yamasaki, K. Kobayashi 和 T. Sakurai, Tetrahedron Lett., 1983,24, i113.12 A. J. Bartlett, J. S. E. Holker E. O'Brien 和 T. J. Simpson, J. Chem. Soc., Perkin Trans.我,1981 年,198 年。论文 3/03094F 1993 年 6 月 1 日收稿 1993 年 9 月 28 日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号