首页> 外文期刊>Analytical and bioanalytical chemistry >High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application
【24h】

High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application

机译:High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, high-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes (3D Co3O4-HPND/CNTs) were successfully prepared via direct carbonizing metal-organic framework-67 in situ grown on carbon nanotubes. The morphology, microstructure, and composite of 3D Co3O4-HPND/CNTs were characterized by scanning electron microscopy, transmission electron microscopy, micropore and chemisorption analyzer, and X-ray diffraction. The electrochemical characterizations indicated that 3D Co3O4-HPND/CNTs present considerably catalytic activity toward glucose oxidation and could be promising for constructing high-performance electrochemical non-enzymatic glucose sensors and glucose/O-2 biofuel cell. When used for non-enzymatic glucose detection, the 3D Co3O4-HPND/CNTs modified glassy carbon electrode (3D Co3O4-HPND/CNTs/GCE) exhibited excellent analytical performance with high sensitivity (22.21 mA mM(-1) cm(-2)), low detection limit of 0.35 mu M (S/N = 3), fast response (less than 5 s) and good stability. On the other hand, when the 3D Co3O4-HPND/CNTs/GCE worked as an anode of a biofuel cell, a maximum power density of 210 mu W cm(-2) at 0.15 V could be obtained, and the open circuit potential was 0.68 V. The attractive 3D hierarchical porous structural features, the large surface area, and the excellent conductivity based on the continuous and effective electron transport network in 3D Co3O4-HPND/CNTs endow 3D Co3O4-HPND/CNTs with the enhanced electrochemical performance and promising applications in electrochemical sensing, biofuel cell, and other energy storage and conversion devices such as supercapacitor.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号